Планиметрия курс — различия между версиями

Материал из Коми тӧданін
(Параллелограммсӧ тӧдмалан ногъяс)
(Куимсэрӧгын пельӧсъяслӧн суммаыс)
 
(не показано 125 промежуточных версий этого же участника)
Строка 1: Строка 1:
 
==Веськыд визь йылысь==
 
==Веськыд визь йылысь==
  
  тшӧтшкӧс плоскость
+
  тшӧтшкӧс плоскость
  веськыд визь прямая
+
  веськыд визь прямая
  чут точка
+
  чут точка
  мыгӧр фигура
+
  мыгӧр фигура
  кывкӧртӧд следствие
+
  кывкӧртӧд следствие
  эскӧдӧм – доказательство
+
  подулалӧм — доказательство
  кыв вожалӧм противоречие
+
  кыв вожалӧм противоречие
  
 
Планиметрияӧн шусьӧ геометриялӧн юкӧн, кӧні велӧдӧны тшӧтшкӧсвывса мыгӧръяс.
 
Планиметрияӧн шусьӧ геометриялӧн юкӧн, кӧні велӧдӧны тшӧтшкӧсвывса мыгӧръяс.
Строка 23: Строка 23:
 
'''Кывкӧртӧд.''' Вомӧнасьӧны кӧ кык торъялана веськыд визь, вомӧнасян чутныс лоӧ сӧмын ӧти.
 
'''Кывкӧртӧд.''' Вомӧнасьӧны кӧ кык торъялана веськыд визь, вомӧнасян чутныс лоӧ сӧмын ӧти.
  
'''Эскӧдӧм.''' Мед, шуам, веськыд визьясыс вомӧнасьӧны торъялана кык чутын. Сідзкӧ, тайӧ чутъяс пырыс позьӧ гижтыны кык торъялана веськыд визь. А аксиомаыд серти, татшӧм визьыс на пыр вермас мунны сӧмын ӧти. Артмӧ кыв вожалӧм.
+
'''Подулалӧм.''' Мед, шуам, веськыд визьясыс вомӧнасьӧны торъялана кык чутын. Сідзкӧ, тайӧ чутъяс пырыс позьӧ гижтыны кык торъялана веськыд визь. А аксиомаыд серти, татшӧм визьыс на пыр вермас мунны сӧмын ӧти. Артмӧ кыв вожалӧм.
  
 
[[Файл:Eti_vomenasjan_cut1.jpg|thumb|center|330px|]]
 
[[Файл:Eti_vomenasjan_cut1.jpg|thumb|center|330px|]]
Строка 51: Строка 51:
 
'''Кывкӧртӧд.''' Мед ӧти веськыд визьын эм куим торъя чут: ''A'', ''B'' да ''C'';  ''AC'' = ''AB'' + ''BC''. Сэки ''B''-ыс куйлӧ ''A'' да ''C'' костас.
 
'''Кывкӧртӧд.''' Мед ӧти веськыд визьын эм куим торъя чут: ''A'', ''B'' да ''C'';  ''AC'' = ''AB'' + ''BC''. Сэки ''B''-ыс куйлӧ ''A'' да ''C'' костас.
  
'''Эскӧдӧм.''' Миян артмӧ: ''AC'' > ''AB'', ''AC'' > ''BC''. ''A'' чутыс кӧ куйлӧ ''B'' да ''C'' костас, ''BC'' > ''AC''; ''C'' чутыс кӧ куйлӧ ''A'' да ''B'' костас, ''AB'' > ''AC''. Сідзкӧ, ''B''-ыс куйлӧ ''A'' да ''C'' костас.
+
'''Подулалӧм.''' Миян артмӧ: ''AC'' > ''AB'', ''AC'' > ''BC''. ''A'' чутыс кӧ куйлӧ ''B'' да ''C'' костас, ''BC'' > ''AC''; ''C'' чутыс кӧ куйлӧ ''A'' да ''B'' костас, ''AB'' > ''AC''. Сідзкӧ, ''B''-ыс куйлӧ ''A'' да ''C'' костас.
  
 
===Тшӧтшкӧсджын===
 
===Тшӧтшкӧсджын===
Строка 113: Строка 113:
 
'''Висьталӧм.''' Визьньӧв кӧ мунӧ пельӧс доръяс костӧд, сійӧ вомӧнасьӧ быд вундӧгкӧд, кодлӧн помъясыс куйлӧны пельӧс доръяс вылас.
 
'''Висьталӧм.''' Визьньӧв кӧ мунӧ пельӧс доръяс костӧд, сійӧ вомӧнасьӧ быд вундӧгкӧд, кодлӧн помъясыс куйлӧны пельӧс доръяс вылас.
  
'''Эскӧдӧм'''. Мед ''O'' – кутшӧмкӧ пельӧслӧн йыв, ''OM'' – визьньӧв, коді мунӧ пельӧс доръяс костӧд. Урчитӧм серти, ''OM'' вомӧнасьӧ кутшӧмкӧ ''AB'' вундӧгкӧд, кӧні ''A'' да ''B'' чутъясыс куйлӧны пельӧс доръяс вылас. Мед ''CD'' – мӧд вундӧг, ''C'' куйлӧ ''OA'' визьньӧв вылын, ''D'' куйлӧ ''OB'' визьньӧв вылын.  
+
'''Подулалӧм.''' Мед ''O'' – кутшӧмкӧ пельӧслӧн йыв, ''OM'' – визьньӧв, коді мунӧ пельӧс доръяс костӧд. Урчитӧм серти, ''OM'' вомӧнасьӧ кутшӧмкӧ ''AB'' вундӧгкӧд, кӧні ''A'' да ''B'' чутъясыс куйлӧны пельӧс доръяс вылас. Мед ''CD'' – мӧд вундӧг, ''C'' куйлӧ ''OA'' визьньӧв вылын, ''D'' куйлӧ ''OB'' визьньӧв вылын.  
  
 
[[Файл:Geom pelkost1.jpg|thumb|center|330px|]]
 
[[Файл:Geom pelkost1.jpg|thumb|center|330px|]]
Строка 146: Строка 146:
  
 
  '''Теорема.''' Ӧтувтам кӧ орчча пельӧсъяслысь ыджданысӧ, лоӧ 180°.
 
  '''Теорема.''' Ӧтувтам кӧ орчча пельӧсъяслысь ыджданысӧ, лоӧ 180°.
  '''Эскӧдӧм.''' Орчча пельӧсъяс артмӧдӧны павтыртӧм пельӧссӧ, кодлӧн ыдждаыс 180°. Сідзкӧ, 2-ӧд аксиома серти, налӧн суммаыс лоас 180°.
+
  '''Подулалӧм.''' Орчча пельӧсъяс артмӧдӧны павтыртӧм пельӧссӧ, кодлӧн ыдждаыс 180°. Сідзкӧ, 2-ӧд аксиома серти, налӧн суммаыс лоас 180°.
 
  '''Кывкӧртӧд.'''  Пельӧсыс кӧ 90° ыджда, сыкӧд орчча пельӧсыс сідзжӧ 90° ыджда.
 
  '''Кывкӧртӧд.'''  Пельӧсыс кӧ 90° ыджда, сыкӧд орчча пельӧсыс сідзжӧ 90° ыджда.
  
Строка 162: Строка 162:
  
 
  '''Теорема.''' Вертикаль пельӧсъяс ӧтыдждаӧсь.
 
  '''Теорема.''' Вертикаль пельӧсъяс ӧтыдждаӧсь.
  '''Эскӧдӧм.''' Серпас серти, ∠''AOB'' да ∠''BOC'' орччаӧсь, ∠''BOC'' да ∠''COD'' орччаӧсь. Та вӧсна ∠''AOB'' + ∠''BOC'' = 180°, ∠''BOC'' + ∠''COD'' = 180°. Сідзкӧ, ∠''AOB'' = 180° – ∠''BOC'' = ∠''COD''.
+
  '''Подулалӧм.''' Серпас серти, ∠''AOB'' да ∠''BOC'' орччаӧсь, ∠''BOC'' да ∠''COD'' орччаӧсь. Та вӧсна ∠''AOB'' + ∠''BOC'' = 180°, ∠''BOC'' + ∠''COD'' = 180°. Сідзкӧ, ∠''AOB'' = 180° – ∠''BOC'' = ∠''COD''.
  
 
[[Файл:Vertikal aob.jpg|thumb|center|330px|]]
 
[[Файл:Vertikal aob.jpg|thumb|center|330px|]]
  
==Куимпельӧсаяс==
+
==Куимсэрӧгъяс==
  
 
  куимпельӧса, куимсэрӧг — треугольник
 
  куимпельӧса, куимсэрӧг — треугольник
  
'''Урчитӧм.''' Куимпельӧсаӧн либӧ куимсэрӧгӧн шусьӧ куим чутысь (кодъяс оз куйлыны ӧти веськыд визь вылын) да найӧс йитан вундӧгъясысь тэчӧм мыгӧр. Индӧм куим чутсӧ куимпельӧсаын шуам йывъяснас, а вундӧгъяссӧ — доръяснас.
+
Куимпельӧсаӧн либӧ куимсэрӧгӧн шусьӧ куим чутысь (кодъяс оз куйлыны ӧти веськыд визь вылын) да найӧс йитан вундӧгъясысь тэчӧм мыгӧр. Индӧм куим чутсӧ куимсэрӧгын шуам йывъяснас, а вундӧгъяссӧ — доръяснас.
  
 
[[Файл:Kuimpelesa dor jyv.jpg|thumb|center|330px|]]
 
[[Файл:Kuimpelesa dor jyv.jpg|thumb|center|330px|]]
  
''ABC'' куимпельӧсаын ''AB'' да ''AС'' визьньӧвъяс костын куйлысь пельӧс шусьӧ ''A'' йывбердса пельӧсӧн.
+
''ABC'' куимсэрӧгын ''AB'' да ''AС'' визьньӧвъяс костын куйлысь пельӧс шусьӧ ''A'' йывбердса пельӧсӧн.
  
===Ӧткодь куимпельӧсаяс===
+
===Ӧткодь куимсэрӧгъяс===
  
  ӧткодь куимпельӧсаяс – равные треугольники
+
  ӧткодь куимсэрӧгъяс – равные треугольники
  
''ABC'' да ''A’B’C’'' куимпельӧсаяс ӧткодьӧсь, налӧн кӧ ӧта-мӧдыслы лӧсялана пельӧсъяс ӧтыдждаӧсь, а ӧта-мӧдыслы лӧсялана доръясыс ӧткузяӧсь: ∠''A'' = ∠''A’'', ∠''B'' = ∠''B’'', ∠''C'' = ∠''C’'', ''AB'' = ''A’B’'', ''AC'' = ''A’C’'', ''BC'' = ''B’C’''.
+
''ABC'' да ''A’B’C’'' куимсэрӧгъяс ӧткодьӧсь, налӧн кӧ ӧта-мӧдыслы лӧсялана пельӧсъяс ӧтыдждаӧсь, а ӧта-мӧдыслы лӧсялана доръясыс ӧткузяӧсь: ∠''A'' = ∠''A’'', ∠''B'' = ∠''B’'', ∠''C'' = ∠''C’'', ''AB'' = ''A’B’'', ''AC'' = ''A’C’'', ''BC'' = ''B’C’''.
  
 
[[Файл:Otked kuimp def.jpg|thumb|center|330px|]]
 
[[Файл:Otked kuimp def.jpg|thumb|center|330px|]]
  
 
Гижтам визьньӧв. Нюжӧдам кӧ сійӧс, лоӧ веськыд визь, коді юклӧ тшӧтшкӧссӧ кык джынйӧ. Бӧръям тайӧ тшӧтшкӧсджынъяс письыс ӧтиӧс.
 
Гижтам визьньӧв. Нюжӧдам кӧ сійӧс, лоӧ веськыд визь, коді юклӧ тшӧтшкӧссӧ кык джынйӧ. Бӧръям тайӧ тшӧтшкӧсджынъяс письыс ӧтиӧс.
Сэсся гижтам ''ABC'' куимпельӧса да бӧръям сылысь дорсӧ (шуам, ''AB'' вундӧгсӧ), а тайӧ вундӧгыслысь пасъям ӧти помсӧ (шуам, ''A'').
+
Сэсся гижтам ''ABC'' куимсэрӧг да бӧръям сылысь дорсӧ (шуам, ''AB'' вундӧгсӧ), а тайӧ вундӧгыслысь пасъям ӧти помсӧ (шуам, ''A'').
  
'''Аксиома.''' Бӧрйӧм тшӧтшкӧсджынйӧ позьӧ пуктыны ''ABC''-кӧд ӧткодь ''DEF'' куимпельӧса сэтшӧм ногӧн, медым ''DE'' вундӧг куйліс индӧм визьньӧвйын да ''D'' помыс ӧтлаасис визьньӧвйыслӧн воддза чуткӧд.
+
'''Аксиома.''' Бӧрйӧм тшӧтшкӧсджынйӧ позьӧ пуктыны ''ABC''-кӧд ӧткодь ''DEF'' куимсэрӧг сэтшӧм ногӧн, медым ''DE'' вундӧг куйліс индӧм визьньӧвйын да ''D'' помыс ӧтлаасис визьньӧвйыслӧн воддза чуткӧд.
  
 
[[Файл:Aks otk tsdz1.jpg|thumb|center|330px|]]
 
[[Файл:Aks otk tsdz1.jpg|thumb|center|330px|]]
  
===Куимпельӧсаяслысь ӧткодьлунсӧ медводдза тӧдмалан ног===
+
===Ӧткодь куимсэрӧгъяслӧн медводдза тӧдмӧг===
  
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' – куимпельӧсаяс, ''AB'' = ''A’B’'', ''AC'' = ''A’C’'', ∠''A'' = ∠''A’'', сэки ∆''ABC'' = ∆''A’B’C’''.
+
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' – куимсэрӧгъяс, ''AB'' = ''A’B’'', ''AC'' = ''A’C’'', ∠''A'' = ∠''A’'', сэки ∆''ABC'' = ∆''A’B’C’''.
  
 
[[Файл:1todmes kuimp.jpg|thumb|center|330px|]]
 
[[Файл:1todmes kuimp.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''AMK'' куимпельӧса, кӧні: 1) ∆''AMK'' = ∆''A’B’C’'', 2) ''AM'' куйлӧ ''AB'' визьньӧвйын, 3) ''AMK'' да ''ABC'' куйлӧны ''AB'' веськыд визь серти ӧти тшӧтшкӧсджынйын.  
+
'''Подулалӧм.''' Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''AMK'' куимсэрӧг, кӧні: 1) ∆''AMK'' = ∆''A’B’C’'', 2) ''AM'' куйлӧ ''AB'' визьньӧвйын, 3) ''AMK'' да ''ABC'' куйлӧны ''AB'' веськыд визь серти ӧти тшӧтшкӧсджынйын.  
  
 
[[Файл:1todmes proof1.jpg|thumb|center|330px|]]
 
[[Файл:1todmes proof1.jpg|thumb|center|330px|]]
  
Кык куимпельӧсаыс (тані ∆''AMK'' да ∆''A’B’C’'') кӧ ӧткодьӧсь, сэки и налӧн лӧсялана доръясыс да пельӧсъясыс тшӧтш ӧткодьӧсь: ''AM'' = ''A’B’'', ''AK'' = ''A’C’'', ∠''B’A’C’'' = ∠''MAK''. Сідзкӧ:  
+
Кык куимсэрӧгыс (тані ∆''AMK'' да ∆''A’B’C’'') кӧ ӧткодьӧсь, сэки и налӧн лӧсялана доръясыс да пельӧсъясыс тшӧтш ӧткодьӧсь: ''AM'' = ''A’B’'', ''AK'' = ''A’C’'', ∠''B’A’C’'' = ∠''MAK''. Сідзкӧ:  
  
1) ''AB'' = ''A’B’'' = ''AM'', сійӧ и ''M'' = ''B'';  
+
1) ''AB'' = ''A’B’'' = ''AM'', сійӧн и ''M'' = ''B'';  
  
 
[[Файл:1todmes proof2.jpg|thumb|center|330px|]]
 
[[Файл:1todmes proof2.jpg|thumb|center|330px|]]
Строка 216: Строка 216:
 
[[Файл:1todmes proof4.jpg|thumb|center|330px|]]
 
[[Файл:1todmes proof4.jpg|thumb|center|330px|]]
  
Кык чут пыр вермӧ мунны сӧмын ӧти веськыд визь. Сідзкӧ, ''AMK'' да ''ABC'' куимпельӧсаяс ӧта-мӧдкӧд лӧсялӧны. Та вӧсна ∆''ABC'' = ∆''A’B’C’''.
+
Кык чут пыр вермӧ мунны сӧмын ӧти веськыд визь. Сідзкӧ, ''AMK'' да ''ABC'' куимсэрӧгъяс ӧта-мӧдкӧд лӧсялӧны. Та вӧсна ∆''ABC'' = ∆''A’B’C’''.
  
===Ӧткодь берда да ӧткодь доръяса куимпельӧсаяс===
+
===Ӧткодь берда да ӧткодь доръяса куимсэрӧгъяс===
  
  ӧткодь берда куимпельӧса – равнобедренный треугольник
+
  ӧткодь берда куимсэрӧг – равнобедренный треугольник
  ӧткодь доръяса куимпельӧса – равносторонний треугольник
+
  ӧткодь доръяса куимсэрӧг – равносторонний треугольник
 
  боквыв доръяс – боковые стороны
 
  боквыв доръяс – боковые стороны
 
  подув – основание
 
  подув – основание
  
*Куимпельӧсаын кӧ кык дорыс ӧтыдждаӧсь, шуам сійӧс ӧткодь берда куимпельӧсаӧн.  
+
*Куимсэрӧгын кӧ кык дорыс ӧтыдждаӧсь, шуам сійӧс ӧткодь берда куимсэрӧгӧн.  
*Куимпельӧсаын кӧ куимнан дорыс ӧтыдждаӧсь, шуам сійӧс ӧткодь доръяса куимпельӧсаӧн.
+
*Куимсэрӧгын кӧ куимнан дорыс ӧтыдждаӧсь, шуам сійӧс ӧткодь доръяса куимсэрӧгӧн.
  
'''Пасйӧд.''' Ӧткодь берда куимпельӧсаын коймӧд дорыс вермӧ торъявны кык ӧткодь дорсьыс, а вермӧ лоны и на кузьта жӧ. Сэки татшӧм ӧткодь берда куимпельӧсаыс лоӧ тшӧтш ӧткодь доръясаӧн. Сідзкӧ, ӧткодь доръяса куимпельӧса лоӧ тшӧтш ӧткодь бердаӧн, сылӧн быд кык дорыс ӧтыдждаӧсь да.
+
'''Пасйӧд.''' Ӧткодь берда куимсэрӧгын коймӧд дорыс вермӧ торъявны кык ӧткодь дорсьыс, а вермӧ лоны и на кузьта жӧ. Сэки татшӧм ӧткодь берда куимсэрӧгыс лоӧ тшӧтш ӧткодь доръясаӧн. Сідзкӧ, ӧткодь доръяса куимсэрӧг лоӧ тшӧтш ӧткодь бердаӧн, сылӧн быд кык дорыс ӧтыдждаӧсь да.
  
 
[[Файл:Otkod berda.jpg|thumb|center|330px|]]
 
[[Файл:Otkod berda.jpg|thumb|center|330px|]]
  
*Ӧткодь берда куимпельӧсаын ӧткодь доръяссӧ шуам боквыв доръясӧн, а коймӧд дорсӧ — подулӧн.
+
*Ӧткодь берда куимсэрӧгын ӧткодь доръяссӧ шуам боквыв доръясӧн, а коймӧд дорсӧ — подулӧн.
 
*Подувлы паныд куйлысь пельӧссӧ шуам йывса пельӧсӧн, а боквыв дорлы паныд куйлысь пельӧссӧ — подувбердса пельӧсӧн.
 
*Подувлы паныд куйлысь пельӧссӧ шуам йывса пельӧсӧн, а боквыв дорлы паныд куйлысь пельӧссӧ — подувбердса пельӧсӧн.
  
 
[[Файл:Poduv berdsa peles.jpg|thumb|center|330px|]]
 
[[Файл:Poduv berdsa peles.jpg|thumb|center|330px|]]
  
'''Теорема.''' Ӧткодь берда куимпельӧсаын подувбердса пельӧсъяс ӧтыдждаӧсь.
+
'''Теорема.''' Ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ӧтыдждаӧсь.
  
 
[[Файл:Dor peles otked.jpg|thumb|center|330px|]]
 
[[Файл:Dor peles otked.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABC'' – ӧткодь берда куимпельӧса, ''AB'' = ''BC''. Лыддям куимпельӧсаыслысь йывъяссӧ ӧтарлань да мӧдарлань: ''ABC'' да ''CBA''. Пуктам ∆''ABC'' да ∆''CBA'' орччӧн. Казялам: ''AB'' = ''BC'', ''CB'' = ''BA'', а на костса ''B'' пельӧс ӧтувъя. Сідзкӧ, ӧткодьлунсӧ медводдза тӧдмалан ног серти, ∆''ABC'' = ∆''CBA''. А та вӧсна и ∠''BAC'' = ∠''BCA''.
+
'''Подулалӧм.''' Мед ''ABC'' – ӧткодь берда куимсэрӧг, ''AB'' = ''BC''. Лыддям куимсэрӧгыслысь йывъяссӧ ӧтарлань да мӧдарлань: ''ABC'' да ''CBA''. Пуктам ∆''ABC'' да ∆''CBA'' орччӧн. Казялам: ''AB'' = ''BC'', ''CB'' = ''BA'', а на костса ''B'' пельӧс ӧтувъя. Сідзкӧ, ӧткодьлунсӧ медводдза тӧдмӧг серти, ∆''ABC'' = ∆''CBA''. А та вӧсна и ∠''BAC'' = ∠''BCA''.
  
 
☼ ☼ ☼  
 
☼ ☼ ☼  
  
Ӧткодь доръяса куимпельӧсалысь куимнан дорсӧ позьӧ шуны кӧть подулӧн, кӧть боквыв дорӧн, а куимнан пельӧссӧ — кӧть подувбердса, кӧть йывса пельӧсӧн.
+
Ӧткодь доръяса куимсэрӧглысь куимнан дорсӧ позьӧ шуны кӧть подулӧн, кӧть боквыв дорӧн, а куимнан пельӧссӧ — кӧть подувбердса, кӧть йывса пельӧсӧн.
  
'''Теорема.''' Ӧткодь доръяса куимпельӧсаын куимнан пельӧсыс ӧтыджда.
+
'''Теорема.''' Ӧткодь доръяса куимсэрӧгын куимнан пельӧсыс ӧтыджда.
  
 
[[Файл:Otked dor dor peles.jpg|thumb|center|330px|]]
 
[[Файл:Otked dor dor peles.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABC'' – ӧткодь доръяса куимпельӧса. Лыддям кӧ ''AC'' дорсӧ подулӧн, сэки ∠''BAC'' = ∠''BCA'', найӧ подувбердса пельӧсъяс да; ''BC'' дорсӧ сідзжӧ позьӧ лыддьыны подулӧн, сэки подувбердса пельӧсъясӧн лоӧны ∠''ACB'' да ∠''ABC'', сідзкӧ найӧ тшӧтш ӧткодьӧсь. Та дырйи ∠''BCA'' да ∠''ACB'' — ӧти сійӧ жӧ пельӧс (видзӧд серпассӧ). Кык ӧткодьлунсьыс (∠''BAC'' = ∠''BCA'' да ∠''BCA'' = ∠''ABC'') артмӧ: ∠''BAC'' = ∠''BCA'' = ∠''ABC''.
+
'''Подулалӧм.''' Мед ''ABC'' – ӧткодь доръяса куимсэрӧг. Лыддям кӧ ''AC'' дорсӧ подулӧн, сэки ∠''BAC'' = ∠''BCA'', найӧ подувбердса пельӧсъяс да; ''BC'' дорсӧ сідзжӧ позьӧ лыддьыны подулӧн, сэки подувбердса пельӧсъясӧн лоӧны ∠''ACB'' да ∠''ABC'', сідзкӧ найӧ тшӧтш ӧткодьӧсь. Та дырйи ∠''BCA'' да ∠''ACB'' — ӧти сійӧ жӧ пельӧс (видзӧд серпассӧ). Кык ӧткодьлунсьыс (∠''BAC'' = ∠''BCA'' да ∠''BCA'' = ∠''ABC'') артмӧ: ∠''BAC'' = ∠''BCA'' = ∠''ABC''.
  
===Куимпельӧсаяслысь ӧткодьлунсӧ мӧд тӧдмалан ног===
+
===Ӧткодь куимсэрӧгъяслӧн мӧд тӧдмӧг===
  
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' – куимпельӧсаяс, ''AB'' = ''A’B’'', ∠''A'' = ∠''A’'', ∠''B'' = ∠''B’'', сэки ∆''ABC'' = ∆''A’B’C’''.
+
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' – куимсэрӧгъяс, ''AB'' = ''A’B’'', ∠''A'' = ∠''A’'', ∠''B'' = ∠''B’'', сэки ∆''ABC'' = ∆''A’B’C’''.
  
 
[[Файл:Kuimp 2 todmes.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp 2 todmes.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''AMK'' куимпельӧса, кӧні: 1) ∆''AMK'' = ∆''A’B’C’'', 2) ''AM'' куйлӧ ''AB'' {{comment|визьньӧвйын|лучын}}, 3) ''AMK'' да ''ABC'' куйлӧны ''AB'' веськыд визь серти ӧти тшӧтшкӧсджынйын.  
+
'''Подулалӧм.''' Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''AMK'' куимсэрӧг, кӧні: 1) ∆''AMK'' = ∆''A’B’C’'', 2) ''AM'' куйлӧ ''AB'' {{comment|визьньӧвйын|лучын}}, 3) ''AMK'' да ''ABC'' куйлӧны ''AB'' веськыд визь серти ӧти тшӧтшкӧсджынйын.  
  
 
[[Файл:Kuimp 2 todm 1.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp 2 todm 1.jpg|thumb|center|330px|]]
  
Кык куимпельӧсаыс (тані ∆''AMK'' да ∆''A’B’C’'') кӧ ӧткодьӧсь, сэки и налӧн лӧсялана доръясыс да пельӧсъясыс тшӧтш ӧткодьӧсь: ''AM'' = ''A’B’'', ∠''B’A’C’'' = ∠''MAK'', ∠''A’B’C’'' = ∠''AMK''. Сідзкӧ:  
+
Кык куимсэрӧгыс (тані ∆''AMK'' да ∆''A’B’C’'') кӧ ӧткодьӧсь, сэки и налӧн лӧсялана доръясыс да пельӧсъясыс тшӧтш ӧткодьӧсь: ''AM'' = ''A’B’'', ∠''B’A’C’'' = ∠''MAK'', ∠''A’B’C’'' = ∠''AMK''. Сідзкӧ:  
  
 
1) ''AB'' =  ''A’B’'' = ''AM'', сійӧн и ''M'' = ''B'';  
 
1) ''AB'' =  ''A’B’'' = ''AM'', сійӧн и ''M'' = ''B'';  
Строка 277: Строка 277:
 
[[Файл:Kuimp 2 todm 4.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp 2 todm 4.jpg|thumb|center|330px|]]
  
Кык торъялана веськыд визь вермӧ вомӧнасьны сӧмын ӧти чутын. Сідзкӧ, миян ''K'' да ''C'' ӧти и сійӧ жӧ чут. Вылынджык аддзим: ''M'' да ''B'' тшӧтш ӧти чут. Со и петӧ, мый ''AMK'' да ''ABC'' куимпельӧсаяс лӧсялӧны. А казьтыштам кӧ, мый ∆''AMK'' да ∆''A’B’C’'' ӧткодьӧсь, сэки и воам кывкӧртӧдӧ: ∆''ABC'' = ∆''A’B’C’''.
+
Кык торъялана веськыд визь вермӧ вомӧнасьны сӧмын ӧти чутын. Сідзкӧ, миян ''K'' да ''C'' ӧти и сійӧ жӧ чут. Вылынджык аддзим: ''M'' да ''B'' тшӧтш ӧти чут. Со и петӧ, мый ''AMK'' да ''ABC'' куимсэрӧгъяс лӧсялӧны. А казьтыштам кӧ, мый ∆''AMK'' да ∆''A’B’C’'' ӧткодьӧсь, сэки и воам кывкӧртӧдӧ: ∆''ABC'' = ∆''A’B’C’''.
  
 
☼ ☼ ☼  
 
☼ ☼ ☼  
  
'''Теорема.''' Куимпельӧсаыс лоӧ ӧткодь бердаӧн, сыын кӧ эм кык ӧтыджда пельӧс.
+
'''Теорема.''' Куимсэрӧгыс лоӧ ӧткодь бердаӧн, сыын кӧ эм кык ӧтыджда пельӧс.
  
 
[[Файл:Otk pel otk dor.jpg|thumb|center|330px|]]
 
[[Файл:Otk pel otk dor.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABC'' – куимпельӧса, ∠''A'' = ∠''C''. Лыддям куимпельӧсаыслысь йывъяссӧ ӧтарлань да мӧдарлань: ''ABC'' да ''CBA''. Пуктам ∆''ABC'' да ∆''CBA'' орччӧн. Казялам: ∠''A'' = ∠''C'', ∠''C'' = ∠''A'', а на костса ''AC'' дорыс ӧтувъя. Сідзкӧ, ӧткодьлунсӧ мӧд тӧдмалан ног серти, ∆''ABC'' = ∆''CBA''. А та вӧсна и ''AB'' = ''BC''.
+
'''Подулалӧм.''' Мед ''ABC'' – куимсэрӧг, ∠''A'' = ∠''C''. Лыддям куимсэрӧгыслысь йывъяссӧ ӧтарлань да мӧдарлань: ''ABC'' да ''CBA''. Пуктам ∆''ABC'' да ∆''CBA'' орччӧн. Казялам: ∠''A'' = ∠''C'', ∠''C'' = ∠''A'', а на костса ''AC'' дорыс ӧтувъя. Сідзкӧ, ӧткодьлунсӧ мӧд тӧдмӧг серти, ∆''ABC'' = ∆''CBA''. А та вӧсна и ''AB'' = ''BC''.
  
 
☼ ☼ ☼  
 
☼ ☼ ☼  
  
'''Кывкӧртӧд 1.''' Куимпельӧсаын кӧ эм кык ӧтыджда пельӧс, татшӧм куимпельӧсаыс быть лоӧ ӧткодь бердаӧн; и мӧдарӧ, куимпельӧсаыс кӧ ӧткодь берда, сыын быть эм кык ӧтыджда пельӧс. (Дженьдӧдӧм могысь шуӧны тадзи: куимпельӧса ӧткодь берда сэк да сӧмын сэк, кор сыын эм кык ӧтыджда пельӧс.)
+
'''Кывкӧртӧд 1.''' Куимсэрӧгын кӧ эм кык ӧтыджда пельӧс, татшӧм куимсэрӧгыс быть лоӧ ӧткодь бердаӧн; и мӧдарӧ, куимсэрӧгыс кӧ ӧткодь берда, сыын быть эм кык ӧтыджда пельӧс. (Дженьдӧдӧм могысь шуӧны тадзи: куимсэрӧг ӧткодь берда сэк да сӧмын сэк, кор сыын эм кык ӧтыджда пельӧс.)
  
'''Кывкӧртӧд 2.''' Куимпельӧсаын кӧ куимнан пельӧсыс ӧтыдждаӧсь, татшӧм куимпельӧсаыс быть лоӧ ӧткодь доръясаӧн; и мӧдарӧ, куимпельӧсаыс кӧ ӧткодь доръяса, сылӧн куимнан пельӧсыс ӧтыдждаӧсь. (Дженьдӧдӧм могысь шуӧны тадзи: куимпельӧса ӧткодь доръяса сэк да сӧмын сэк, кор сыын куимнан пельӧсыс ӧтыдждаӧсь.)
+
'''Кывкӧртӧд 2.''' Куимсэрӧгын кӧ куимнан пельӧсыс ӧтыдждаӧсь, татшӧм куимсэрӧгыс быть лоӧ ӧткодь доръясаӧн; и мӧдарӧ, куимсэрӧгыс кӧ ӧткодь доръяса, сылӧн куимнан пельӧсыс ӧтыдждаӧсь. (Дженьдӧдӧм могысь шуӧны тадзи: куимсэрӧг ӧткодь доръяса сэк да сӧмын сэк, кор сыын куимнан пельӧсыс ӧтыдждаӧсь.)
  
 
[[Файл:3peljes 3dor.jpg|thumb|center|330px|]]
 
[[Файл:3peljes 3dor.jpg|thumb|center|330px|]]
Строка 301: Строка 301:
 
[[Файл:Bissektr def.jpg|thumb|center|330px|]]
 
[[Файл:Bissektr def.jpg|thumb|center|330px|]]
  
*Куимпельӧсаын биссектрисаӧн шуӧны вундӧг, коді юклӧ сылысь ӧти пельӧссӧ шӧрипӧв да йитӧ тайӧ пельӧс йывсӧ паныда дор вылын куйлысь чуткӧд.
+
*Куимсэрӧгын биссектрисаӧн шуӧны вундӧг, коді юклӧ сылысь ӧти пельӧссӧ шӧрипӧв да йитӧ тайӧ пельӧс йывсӧ паныда дор вылын куйлысь чуткӧд.
  
 
[[Файл:Kuimp bis def.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp bis def.jpg|thumb|center|330px|]]
  
*Куимпельӧсаын медианаӧн шуӧны вундӧг, коді йитӧ сылысь ӧти йывсӧ паныда дорвывса шӧр чуткӧд.
+
*Куимсэрӧгын медианаӧн шуӧны вундӧг, коді йитӧ сылысь ӧти йывсӧ паныда дорвывса шӧр чуткӧд.
  
 
[[Файл:Kuimp mediana def.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp mediana def.jpg|thumb|center|330px|]]
Строка 311: Строка 311:
 
'''Теорема.''' Кык веськыд визь кӧ вомӧнасьӧны да та дырйи артмӧм нёль пельӧсысь ӧтиыс кӧ лоӧ бур, сэки мукӧд куим пельӧсыс тшӧтш бурӧсь.
 
'''Теорема.''' Кык веськыд визь кӧ вомӧнасьӧны да та дырйи артмӧм нёль пельӧсысь ӧтиыс кӧ лоӧ бур, сэки мукӧд куим пельӧсыс тшӧтш бурӧсь.
  
'''Эскӧдӧм.''' Тайӧ куим пельӧс пӧвстысь ӧтиыс куйлӧ 90°‐а пельӧскӧд вертикаль ногӧн, та вӧсна сійӧ лоӧ тшӧтш бур (вертикаль пельӧсъяс ӧткодьӧсь да). Мӧд кыкыс 90°‐а пельӧскӧд орччаӧсь, та вӧсна и найӧ бурӧсь (кыдзи ми тӧдам нин).
+
'''Подулалӧм.''' Тайӧ куим пельӧс пӧвстысь ӧтиыс куйлӧ 90°‐а пельӧскӧд вертикаль ногӧн, та вӧсна сійӧ лоӧ тшӧтш бур (вертикаль пельӧсъяс ӧткодьӧсь да). Мӧд кыкыс 90°‐а пельӧскӧд орччаӧсь, та вӧсна и найӧ бурӧсь (кыдзи ми тӧдам нин).
  
 
[[Файл:Perpend 4.jpg|thumb|center|330px|]]
 
[[Файл:Perpend 4.jpg|thumb|center|330px|]]
Строка 317: Строка 317:
 
*Веськыд визь шусьӧ перпендикулярӧн мӧд веськыд визьлы, найӧ кӧ артмӧдӧны бур пельӧс.
 
*Веськыд визь шусьӧ перпендикулярӧн мӧд веськыд визьлы, найӧ кӧ артмӧдӧны бур пельӧс.
  
*Куимпельӧсаын судтаӧн шуӧны вундӧг, коді йитӧ сылысь ӧти йывсӧ паныда дор визь вылын куйлысь чуткӧд да лоӧ тайӧ дорыслы перпендикулярӧн.
+
*Куимсэрӧгын судтаӧн шуӧны вундӧг, коді йитӧ сылысь ӧти йывсӧ паныда дор визь вылын куйлысь чуткӧд да лоӧ тайӧ дорыслы перпендикулярӧн.
  
 
[[Файл:Sudta kuimp.jpg|thumb|center|330px|]]
 
[[Файл:Sudta kuimp.jpg|thumb|center|330px|]]
  
'''Теорема.''' Ӧткодь берда куимпельӧсаын йывса пельӧсса биссектрисаыс лоӧ ӧттшӧтш медианаӧн да судтанас.
+
'''Теорема.''' Ӧткодь берда куимсэрӧгын йывса пельӧсса биссектрисаыс лоӧ ӧттшӧтш медианаӧн да судтанас.
  
 
[[Файл:Otk berda bis med sudta.jpg|thumb|center|330px|]]
 
[[Файл:Otk berda bis med sudta.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABC'' – куимпельӧса, кӧні ''AB'' = ''BC'', а ''BD'' – биссектрисаыс, коді юклӧ ''ABC''-сӧ кык пельӧ: ∆''ABD'' да ∆''CBD''. Казялам: ''AB'' = ''CB'', ∠''ABD'' = ∠''CBD'', а ''BD'' – налӧн ӧтувъя дор. Ӧткодьлунсӧ медводдза тӧдмалан ног серти, ∆''ABD'' = ∆''CBD''. Таысь петӧ кык тор:
+
'''Подулалӧм.''' Мед ''ABC'' – куимсэрӧг, кӧні ''AB'' = ''BC'', а ''BD'' – биссектрисаыс, коді юклӧ ''ABC''-сӧ кык пельӧ: ∆''ABD'' да ∆''CBD''. Казялам: ''AB'' = ''CB'', ∠''ABD'' = ∠''CBD'', а ''BD'' – налӧн ӧтувъя дор. Ӧткодьлунсӧ медводдза тӧдмӧг серти, ∆''ABD'' = ∆''CBD''. Таысь петӧ кык тор:
 
# ''AD'' = ''DC'', а сідзкӧ, ''BD'' — медиана;  
 
# ''AD'' = ''DC'', а сідзкӧ, ''BD'' — медиана;  
 
# ∠''BDA'' = ∠''BDC''; серпасысь позьӧ аддзыны, мый тайӧ ӧткодь пельӧсъясыс орччаӧсь. Кыдзи ми тӧдам, орчча пельӧсъяслӧн суммаыс 180°, та вӧсна ∠''BDA'' = 90° да ∠''BDC'' = 90°, а сідзкӧ, ''BD'' — судта.
 
# ∠''BDA'' = ∠''BDC''; серпасысь позьӧ аддзыны, мый тайӧ ӧткодь пельӧсъясыс орччаӧсь. Кыдзи ми тӧдам, орчча пельӧсъяслӧн суммаыс 180°, та вӧсна ∠''BDA'' = 90° да ∠''BDC'' = 90°, а сідзкӧ, ''BD'' — судта.
  
===Куимпельӧсаяслысь ӧткодьлунсӧ коймӧд тӧдмалан ног===
+
===Ӧткодь куимсэрӧгъяслӧн коймӧд тӧдмӧг===
  
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' – куимпельӧсаяс, кӧні ''AB'' = ''A’B’'', ''BC'' = ''B’C’'', ''AC'' = ''A’C’'', сэки ∆''ABC'' = ∆''A’B’C’''.
+
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' – куимсэрӧгъяс, кӧні ''AB'' = ''A’B’'', ''BC'' = ''B’C’'', ''AC'' = ''A’C’'', сэки ∆''ABC'' = ∆''A’B’C’''.
  
 
[[Файл:Kuimp otk 3 todm.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp otk 3 todm.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''AMK'' куимпельӧса, кӧні: 1) ∆''AMK'' = ∆''A’B’C’''; 2) ''AM'' куйлӧ ''AB'' визьньӧвйын; 3) ''K'' да ''C'' чутъяс куйлӧны торъя тшӧтшкӧсджынъясын ''AB'' веськыд визь серти.
+
'''Подулалӧм.''' Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''AMK'' куимсэрӧг, кӧні: 1) ∆''AMK'' = ∆''A’B’C’''; 2) ''AM'' куйлӧ ''AB'' визьньӧвйын; 3) ''K'' да ''C'' чутъяс куйлӧны торъя тшӧтшкӧсджынъясын ''AB'' веськыд визь серти.
  
 
'''(колӧ серпас)'''
 
'''(колӧ серпас)'''
Строка 343: Строка 343:
 
[[Файл:Kuimp otk 3 todmes1.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp otk 3 todmes1.jpg|thumb|center|330px|]]
  
''AC'' = ''A’C’'' = ''AK''; сідзкӧ, ''AC'' да ''AK'' – боквыв доръяс ӧткодь берда ''CAK'' куимпельӧсаын. Та вӧсна ∠''AKC'' = ∠''ACK''. Сэтшӧм жӧ ногӧн артмӧдам: ∠''BKC'' = ∠''BCK''.  
+
''AC'' = ''A’C’'' = ''AK''; сідзкӧ, ''AC'' да ''AK'' – боквыв доръяс ӧткодь берда ''CAK'' куимсэрӧгын. Та вӧсна ∠''AKC'' = ∠''ACK''. Сэтшӧм жӧ ногӧн артмӧдам: ∠''BKC'' = ∠''BCK''.  
  
 
[[Файл:Kuimp otk 3 todmes2.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp otk 3 todmes2.jpg|thumb|center|330px|]]
  
Сідзкӧ, ∠''ACB'' = ∠''ACK'' + ∠''BCK'' = ∠''AKC'' + ∠''BKC'' = ∠''AKB''. Таысь кындзи, ''AC'' = ''AK'', ''BC'' = ''BK''. Сы вӧсна ''ABC'' да ''ABK'' куимпельӧсаяс ӧткодьӧсь медводдза тӧдмалан ног серти да ∆''A’B’C’'' = ∆''ABK'' = ∆''ABC''.
+
Сідзкӧ, ∠''ACB'' = ∠''ACK'' + ∠''BCK'' = ∠''AKC'' + ∠''BKC'' = ∠''AKB''. Таысь кындзи, ''AC'' = ''AK'', ''BC'' = ''BK''. Сы вӧсна ''ABC'' да ''ABK'' куимсэрӧгъяс ӧткодьӧсь медводдза тӧдмӧг серти да ∆''A’B’C’'' = ∆''ABK'' = ∆''ABC''.
  
 
===Веськыд визьлань ортсы чут пыр гижтӧм перпендикуляр===
 
===Веськыд визьлань ортсы чут пыр гижтӧм перпендикуляр===
Строка 353: Строка 353:
 
'''Теорема.''' Веськыд визьысь ортсыын куйлысь чут пыр оз позь гижтыны сы дорӧ кык торъялана перпендикуляр.
 
'''Теорема.''' Веськыд визьысь ортсыын куйлысь чут пыр оз позь гижтыны сы дорӧ кык торъялана перпендикуляр.
  
'''Эскӧдӧм''' (паныдсянь). Мед ''A'' чут лоӧ ''l'' веськыд визьысь ортсыын, а ''AM'' да ''AN'' – тайӧ визь дорас кык торъялана перпендикуляр, кодъяс вомӧналӧны ''l''-сӧ ''M'' да ''N'' чутъясын. Та дырйи ''M'' да ''N'' – кык торъялана чут.
+
'''Подулалӧм''' (паныдсянь). Мед ''A'' чут лоӧ ''l'' веськыд визьысь ортсыын, а ''AM'' да ''AN'' – тайӧ визь дорас кык торъялана перпендикуляр, кодъяс вомӧналӧны ''l''-сӧ ''M'' да ''N'' чутъясын. Та дырйи ''M'' да ''N'' – кык торъялана чут.
  
 
[[Файл:Kyk perpend.jpg|thumb|center|330px|]]
 
[[Файл:Kyk perpend.jpg|thumb|center|330px|]]
  
Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''MBN'' куимпельӧса, кӧні: 1) ∆''MBN'' = ∆''MAN'', 2) ''A'' да ''B'' чутъяс куйлӧны ''l'' веськыд визь серти торъя тшӧтшкӧсджынъясын.
+
Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''MBN'' куимсэрӧг, кӧні: 1) ∆''MBN'' = ∆''MAN'', 2) ''A'' да ''B'' чутъяс куйлӧны ''l'' веськыд визь серти торъя тшӧтшкӧсджынъясын.
  
 
[[Файл:Kyk perpend 1.jpg|thumb|center|330px|]]
 
[[Файл:Kyk perpend 1.jpg|thumb|center|330px|]]
Строка 363: Строка 363:
 
Миян артмӧ: ∠''AMN'' = ∠''BMN'' = 90°; та вӧсна ∠''AMB'' = 180° да ''M'' чут куйлӧ ''AB'' веськыд визь вылын. Сэтшӧм жӧ ногӧн артмӧдам: ''N'' чут куйлӧ ''AB'' веськыд визь вылын. ''AB'' да ''l'' веськыдъяс вомӧнасьӧны сӧмын ӧти чутын. Сідзкӧ, ''M'' = ''N'', а тайӧ оз лӧсяв миян воддза шуӧмкӧд, код серти ''M'' да ''N'' – кык торъялана чут.
 
Миян артмӧ: ∠''AMN'' = ∠''BMN'' = 90°; та вӧсна ∠''AMB'' = 180° да ''M'' чут куйлӧ ''AB'' веськыд визь вылын. Сэтшӧм жӧ ногӧн артмӧдам: ''N'' чут куйлӧ ''AB'' веськыд визь вылын. ''AB'' да ''l'' веськыдъяс вомӧнасьӧны сӧмын ӧти чутын. Сідзкӧ, ''M'' = ''N'', а тайӧ оз лӧсяв миян воддза шуӧмкӧд, код серти ''M'' да ''N'' – кык торъялана чут.
  
'''Теорема.''' Ӧткодь берда куимпельӧсаын йывса пельӧсса судта лоӧ ӧттшӧтш биссектрисаӧн да медианаӧн.
+
'''Теорема.''' Ӧткодь берда куимсэрӧгын йывса пельӧсса судта лоӧ ӧттшӧтш биссектрисаӧн да медианаӧн.
  
 
[[Файл:Otk berda sudta bis med.jpg|thumb|center|330px|]]
 
[[Файл:Otk berda sudta bis med.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм''' (паныдсянь). Мед судтаыс оз ло биссектрисаӧн. Гижтам йывса пельӧслысь биссектрисасӧ. Кыдзи ми тӧдам нин, ӧткодь берда куимпельӧсаын йывса пельӧслӧн биссектрисаыс ӧттшӧтш лоӧ сылы судтаӧн. Сідзкӧ, йывса пельӧсысь позьӧ гижтыны подувлы кык торъялана перпендикуляр, а тайӧ оз лӧсяв воддза теоремакӧд.
+
'''Подулалӧм''' (паныдсянь). Мед судтаыс оз ло биссектрисаӧн. Гижтам йывса пельӧслысь биссектрисасӧ. Кыдзи ми тӧдам нин, ӧткодь берда куимсэрӧгын йывса пельӧслӧн биссектрисаыс ӧттшӧтш лоӧ сылы судтаӧн. Сідзкӧ, йывса пельӧсысь позьӧ гижтыны подувлы кык торъялана перпендикуляр, а тайӧ оз лӧсяв воддза теоремакӧд.
  
 
'''Теорема.''' Веськыд визь дорӧ сыысь ортсыын куйлысь чут пырыс позьӧ гижтыны перпендикуляр.  
 
'''Теорема.''' Веськыд визь дорӧ сыысь ортсыын куйлысь чут пырыс позьӧ гижтыны перпендикуляр.  
Строка 373: Строка 373:
 
[[Файл:Perp exist0.jpg|thumb|center|330px|]]
 
[[Файл:Perp exist0.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''A'' чут куйлӧ ''l'' веськыд визьысь ортсыын, ''B'' да ''C'' чутъяс лоӧны ''l'' вылын. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''BA’C'' куимпельӧса, кӧні: 1) ∆''BA’C'' = ∆''BAC'', 2) ''A'' да ''A’'' чутъяс куйлӧны ''l'' веськыд визь серти торъя тшӧтшкӧсджынъясын. Сідзкӧ, ''ABA’'' куимпельӧсаын ''AB'' = ''A’B'', ''BC'' визьньӧв – ∠''ABA’''-лӧн биссектриса. Кыдзи ми тӧдам нин, ӧткодь берда куимпельӧсаын йывса пельӧслӧн биссектрисаыс ӧттшӧтш лоӧ сылы судтаӧн. Сідзкӧ, ''AA’'' лоӧ ''l''-лы перпендикулярӧн.
+
'''Подулалӧм.''' Мед ''A'' чут куйлӧ ''l'' веськыд визьысь ортсыын, ''B'' да ''C'' чутъяс лоӧны ''l'' вылын. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм ''BA’C'' куимсэрӧг, кӧні: 1) ∆''BA’C'' = ∆''BAC'', 2) ''A'' да ''A’'' чутъяс куйлӧны ''l'' веськыд визь серти торъя тшӧтшкӧсджынъясын. Сідзкӧ, ''ABA’'' куимсэрӧгын ''AB'' = ''A’B'', ''BC'' визьньӧв – ∠''ABA’''-лӧн биссектриса. Кыдзи ми тӧдам нин, ӧткодь берда куимсэрӧгын йывса пельӧслӧн биссектрисаыс ӧттшӧтш лоӧ сылы судтаӧн. Сідзкӧ, ''AA’'' лоӧ ''l''-лы перпендикулярӧн.
  
 
===Ортсыса пельӧс===
 
===Ортсыса пельӧс===
Куимпельӧсалысь став видлалӧм сикас пельӧсъяссӧ позьӧ шуны тшӧтш пытшкӧс пельӧсъясӧн.
+
Куимсэрӧглысь став видлалӧм сикас пельӧсъяссӧ позьӧ шуны тшӧтш пытшкӧс пельӧсъясӧн.
Куимпельӧса бердын куимнан пытшкӧс пельӧскӧд орччӧн куйлӧны ортсы пельӧсъяс.
+
Куимсэрӧг бердын куимнан пытшкӧс пельӧскӧд орччӧн куйлӧны ортсы пельӧсъяс.
Мӧд ногӧн шуны, куимпельӧсалӧн ортсы пельӧсӧн шусьӧ быд пытшкӧс пельӧскӧд орчча пельӧс.
+
Мӧд ногӧн шуны, куимсэрӧглӧн ортсы пельӧсӧн шусьӧ быд пытшкӧс пельӧскӧд орчча пельӧс.
  
 
[[Файл:Ortsysa peljes.jpg|thumb|center|330px|]]
 
[[Файл:Ortsysa peljes.jpg|thumb|center|330px|]]
  
'''Теорема.''' Ортсыса пельӧс ыджыдджык куимпельӧсаса кыкнан пельӧсысь, коді сыкӧд абу орччӧн.
+
'''Теорема.''' Ортсыса пельӧс ыджыдджык куимсэрӧгса кыкнан пельӧсысь, коді сыкӧд абу орччӧн.
  
'''Эскӧдӧм.''' Мед ''ABC'' — куимпельӧса, ∠''BCD'' — сылӧн ортсы пельӧс, коді куйлӧ ∠''BCA''-кӧд орччӧн; та дырйи ''C'' чут куйлӧ ''A'' да ''D'' костын. Петкӧдлам: ∠''ABC'' < ∠''BCD''.
+
'''Подулалӧм.''' Мед ''ABC'' — куимсэрӧг, ∠''BCD'' — сылӧн ортсы пельӧс, коді куйлӧ ∠''BCA''-кӧд орччӧн; та дырйи ''C'' чут куйлӧ ''A'' да ''D'' костын. Петкӧдлам: ∠''ABC'' < ∠''BCD''.
  
 
[[Файл:Ortsysa pel ydzyddzyk0.jpg|thumb|center|330px|]]
 
[[Файл:Ortsysa pel ydzyddzyk0.jpg|thumb|center|330px|]]
  
Та могысь гижтам ∠''BCD'' пельӧс доръяс костӧд сэтшӧм ''CE'' визьньӧв, медым ∠''ABC'' = ∠''BCE''. Кытысь лоӧ ''E'' чутыс? ''BC'' вундӧг шӧрын куйлысь чут пыр (пасъям сійӧс ''O'') гижтам ''AO'' визьньӧв. Тайӧ визьньӧв вылас пасъям ''E'' чут, коді куйлӧ ''O'' чутсянь сы ылнаын жӧ, кыдзи и ''A'' чут. Миян артмӧ: 1) ''OC'' = ''OB''; 2) ''AO'' = ''OE''; 3) ∠''AOB'' = ∠''EOC'' кыдзи вертикаль пельӧсъяс. Сідзкӧ ∆''AOB'' = ∆''EOC'' медводдза тӧдмалан ног серти. Та вӧсна ∠''ABC'' = ∠''BCE'', кыдзи ӧткодь куимпельӧсаясын лӧсялана пельӧсъяс.
+
Та могысь гижтам ∠''BCD'' пельӧс доръяс костӧд сэтшӧм ''CE'' визьньӧв, медым ∠''ABC'' = ∠''BCE''. Кытысь лоӧ ''E'' чутыс? ''BC'' вундӧг шӧрын куйлысь чут пыр (пасъям сійӧс ''O'') гижтам ''AO'' визьньӧв. Тайӧ визьньӧв вылас пасъям ''E'' чут, коді куйлӧ ''O'' чутсянь сы ылнаын жӧ, кыдзи и ''A'' чут. Миян артмӧ: 1) ''OC'' = ''OB''; 2) ''AO'' = ''OE''; 3) ∠''AOB'' = ∠''EOC'' кыдзи вертикаль пельӧсъяс. Сідзкӧ ∆''AOB'' = ∆''EOC'' медводдза тӧдмӧг серти. Та вӧсна ∠''ABC'' = ∠''BCE'', кыдзи ӧткодь куимсэрӧгъясын лӧсялана пельӧсъяс.
  
 
''O'', ''B'' да ''E'' чутъяс куйлӧны ӧти тшӧтшкӧсджынйын ''AD'' веськыд визь серти. Миян артмӧ: 1) ∠''BCD'' = 180° – ∠''BCA'' (кыдз орчча); 2) ''ВС'' да ''AE'' вундӧгъяс вомӧнасьӧны, мӧд ног шуны, ''CB'' визьньӧв мунӧ ∠''ACE'' пельӧс доръяс костӧд. Сідзкӧ ∠''ACE'' = ∠''BCE'' + ∠''BCA''. 3) ∠''ACE'' < 180°, та вӧсна ∠''ACE''-ысь кӧ чинтам ∠''BCA'' да 180°-ысь сійӧ жӧ ∠''BCA'' чинтам, медводдза чинтасыс лоас этшаджык мӧд чинтассьыс (формулаӧн кӧ пасъям, ∠''ACE'' – ∠''BCA'' <  180° – ∠''BCA'').
 
''O'', ''B'' да ''E'' чутъяс куйлӧны ӧти тшӧтшкӧсджынйын ''AD'' веськыд визь серти. Миян артмӧ: 1) ∠''BCD'' = 180° – ∠''BCA'' (кыдз орчча); 2) ''ВС'' да ''AE'' вундӧгъяс вомӧнасьӧны, мӧд ног шуны, ''CB'' визьньӧв мунӧ ∠''ACE'' пельӧс доръяс костӧд. Сідзкӧ ∠''ACE'' = ∠''BCE'' + ∠''BCA''. 3) ∠''ACE'' < 180°, та вӧсна ∠''ACE''-ысь кӧ чинтам ∠''BCA'' да 180°-ысь сійӧ жӧ ∠''BCA'' чинтам, медводдза чинтасыс лоас этшаджык мӧд чинтассьыс (формулаӧн кӧ пасъям, ∠''ACE'' – ∠''BCA'' <  180° – ∠''BCA'').
Строка 406: Строка 406:
 
Сэтшӧм жӧ ногӧн артмӧдам, мый ∠''BAC'' < ∠''BCD''.
 
Сэтшӧм жӧ ногӧн артмӧдам, мый ∠''BAC'' < ∠''BCD''.
  
===Куимпельӧсалысь доръяс да пельӧсъяс ӧтластитӧм===
+
===Куимсэрӧглысь доръяс да пельӧсъяс ӧтластитӧм===
  
'''Теорема.''' Куимпельӧсаын ыджыдджык дорлы паныд куйлӧ ыджыдджык пельӧс.
+
'''Теорема.''' Куимсэрӧгын ыджыдджык дорлы паныд куйлӧ ыджыдджык пельӧс.
  
 
[[Файл:Dor peljes otlastitem1.jpg|thumb|center|330px|]]
 
[[Файл:Dor peljes otlastitem1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABC'' куимпельӧсаын ''AC'' > ''AB''. Петкӧдлам: ∠''ABC'' > ∠''ACB''.
+
'''Подулалӧм.''' Мед ''ABC'' куимсэрӧгын ''AC'' > ''AB''. Петкӧдлам: ∠''ABC'' > ∠''ACB''.
Пасъям ''AC'' вундӧг вылын сэтшӧм ''D'' чут, медым ''AD'' = ''AB''. Сідзкӧ, ∠''ABD'' = ∠''BDA'', ӧд найӧ ӧткодь берда куимпельӧсаын подувбердса пельӧсъяс.  
+
Пасъям ''AC'' вундӧг вылын сэтшӧм ''D'' чут, медым ''AD'' = ''AB''. Сідзкӧ, ∠''ABD'' = ∠''BDA'', ӧд найӧ ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс.  
  
''BD'' вундӧг юкӧ ∆''ABC''-сӧ кык пельӧ; сы пытшкын ӧні эм кык куимпельӧса: ∆''ABD'' да ∆''BCD''.
+
''BD'' вундӧг юкӧ ∆''ABC''-сӧ кык пельӧ; сы пытшкын ӧні эм кык куимсэрӧг: ∆''ABD'' да ∆''BCD''.
∠''BDA'' лоӧ ∆''BCD'' куимпельӧсалы ортсыса пельӧс. Кыдзи ми тӧдам нин, ортсыса пельӧс век ыджыдджык пытшкӧсса пельӧсысь, коді сыкӧд абу орчча. Сідзкӧ ∠''BDA'' > ∠''BCD''.
+
∠''BDA'' лоӧ ∆''BCD'' куимсэрӧглы ортсыса пельӧс. Кыдзи ми тӧдам нин, ортсыса пельӧс век ыджыдджык пытшкӧсса пельӧсысь, коді сыкӧд абу орчча. Сідзкӧ ∠''BDA'' > ∠''BCD''.
 
Ӧтувтам кӧ став артмӧм формула, лоас:  
 
Ӧтувтам кӧ став артмӧм формула, лоас:  
  
Строка 429: Строка 429:
 
Сідзкӧ, ∠''ABC'' > ∠''ACB''.
 
Сідзкӧ, ∠''ABC'' > ∠''ACB''.
  
'''Теорема.''' Куимпельӧсаын ыджыдджык пельӧслы паныд куйлӧ ыджыдджык дор.
+
'''Теорема.''' Куимсэрӧгын ыджыдджык пельӧслы паныд куйлӧ ыджыдджык дор.
  
 
(татчӧ колӧ серпас)
 
(татчӧ колӧ серпас)
  
'''Эскӧдӧм.''' Мед ''ABC'' куимпельӧсаын ∠''ABC'' > ∠''ACB''. Петкӧдлам: ''AC'' > ''AB''.
+
'''Подулалӧм.''' Мед ''ABC'' куимсэрӧгын ∠''ABC'' > ∠''ACB''. Петкӧдлам: ''AC'' > ''AB''.
  
 
Тайӧ кӧ абу сідз, либӧ ''AC'' = ''AB'', либӧ ''AC'' < ''AB''. Кыдзи ми тӧдам нин, кор ''AC'' = ''AB'', сэки ∠''ABC'' = ∠''ACB''; кор ''AC'' < ''AB'', сэки ∠''ABC'' < ∠''ACB''. Тайӧ оз лӧсяв ∠''ABC'' > ∠''ACB'' ӧткодьтӧмлункӧд.
 
Тайӧ кӧ абу сідз, либӧ ''AC'' = ''AB'', либӧ ''AC'' < ''AB''. Кыдзи ми тӧдам нин, кор ''AC'' = ''AB'', сэки ∠''ABC'' = ∠''ACB''; кор ''AC'' < ''AB'', сэки ∠''ABC'' < ∠''ACB''. Тайӧ оз лӧсяв ∠''ABC'' > ∠''ACB'' ӧткодьтӧмлункӧд.
Строка 439: Строка 439:
 
☼ ☼ ☼  
 
☼ ☼ ☼  
  
Сідзкӧ, куимпельӧсаын ӧти дор кузьджык мӧд дорсьыс сэк да сӧмын сэк, кор медводдза дорыслы паныд куйлан пельӧс ыджыдджык мӧд дорыслы паныд куйлан пельӧсысь.
+
Сідзкӧ, куимсэрӧгын ӧти дор кузьджык мӧд дорсьыс сэк да сӧмын сэк, кор медводдза дорыслы паныд куйлан пельӧс ыджыдджык мӧд дорыслы паныд куйлан пельӧсысь.
  
===Ёсь пельӧса, бур (веськыд) пельӧса да ныж пельӧса куимсэрӧгъяс===
+
===Ёсьпельӧса, бурпельӧса да ныжпельӧса куимсэрӧгъяс===
  
  ёсь пельӧса куимсэрӧг — остроугольный треугольник
+
  ёсьпельӧса куимсэрӧг — остроугольный треугольник
  бур (веськыд) пельӧса куимсэрӧг — прямоугольный треугольник
+
  бурпельӧса куимсэрӧг — прямоугольный треугольник
  ныж пельӧса куимсэрӧг — тупоугольный треугольник
+
  ныжпельӧса куимсэрӧг — тупоугольный треугольник
  
Куимсэрӧг шусьӧ ёсь пельӧсаӧн, сыын кӧ куимнан пельӧсыс ёсь.
+
Куимсэрӧг шусьӧ ёсьпельӧсаӧн, сыын кӧ куимнан пельӧсыс ёсь.
  
Куимсэрӧг шусьӧ бур (веськыд) пельӧсаӧн, сыын кӧ ӧти пельӧсыс бур (веськыд).
+
Куимсэрӧг шусьӧ бурпельӧсаӧн, сыын кӧ ӧти пельӧсыс бур (веськыд).
  
Куимсэрӧг шусьӧ ныж пельӧсаӧн, сыын кӧ ӧти пельӧсыс ныж.
+
Куимсэрӧг шусьӧ ныжпельӧсаӧн, сыын кӧ ӧти пельӧсыс ныж.
  
  
'''Теорема.''' 1) Бур пельӧса куимсэрӧгын гипотенузабердса пельӧсъяс ёсьӧсь. 2) Гипотенуза кузьджык катетысь.
+
'''Теорема.''' 1) Бурпельӧса куимсэрӧгын гипотенузабердса пельӧсъяс ёсьӧсь. 2) Гипотенуза кузьджык катетысь.
  
 
[[Файл:Veskydpeljesa kuimsereg otk.jpg|thumb|center|330px|]]
 
[[Файл:Veskydpeljesa kuimsereg otk.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' 1) Бур пельӧскӧд орчча пельӧс тшӧтш бур; теорема серти, сійӧ ыджыдджык гипотенузабердса пельӧсысь.
+
'''Подулалӧм.''' 1) Бур пельӧскӧд орчча пельӧс тшӧтш бур; теорема серти, сійӧ ыджыдджык гипотенузабердса пельӧсысь.
2) Бур (веськыд) пельӧсыс куимпельӧсаын медыджыд, та вӧсна сылы паныд куйлысь дор медкузь.
+
2) Бур (веськыд) пельӧсыс куимсэрӧгын медыджыд, та вӧсна сылы паныд куйлысь дор медкузь.
  
'''Висьталӧм.''' Ныж пельӧса куимсэрӧгын эм кык ёсь пельӧс.
+
'''Висьталӧм.''' Ныжпельӧса куимсэрӧгын эм кык ёсь пельӧс.
  
 
[[Файл:Tsotsyd 2 jos.jpg|thumb|center|330px|]]
 
[[Файл:Tsotsyd 2 jos.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Ӧти пельӧсыс кӧ ныж, сыкӧд орчча пельӧсыс ёсь. Кыдз ми тӧдам нин, ортсыса пельӧс ыджыдджык пытшкӧсса пельӧсысь, коді абу сыкӧд орччӧн. Сідзкӧ куимпельӧсаыслӧн мукӧд пытшкӧсса пельӧсъяс ёсь пельӧсысь ичӧтджыкӧсь; та вӧсна найӧ асьныс ёсьӧсь.
+
'''Подулалӧм.''' Ӧти пельӧсыс кӧ ныж, сыкӧд орчча пельӧсыс ёсь. Кыдз ми тӧдам нин, ортсыса пельӧс ыджыдджык пытшкӧсса пельӧсысь, коді абу сыкӧд орччӧн. Сідзкӧ куимсэрӧгыслӧн мукӧд пытшкӧсса пельӧсъяс ёсь пельӧсысь ичӧтджыкӧсь; та вӧсна найӧ асьныс ёсьӧсь.
  
 
'''Висьталӧм.''' Ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ёсьӧсь.
 
'''Висьталӧм.''' Ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ёсьӧсь.
Строка 471: Строка 471:
 
[[Файл:Otk berda 2 jos.jpg|thumb|center|330px|]]
 
[[Файл:Otk berda 2 jos.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Кыдз ми тӧдам нин, 1) ӧткодь берда куимпельӧсаын подувбердса пельӧсъяс ӧтыдждаӧсь, 2) бур пельӧса либӧ ныж пельӧса куимсэрӧгын эм кык ёсь пельӧс. Сідзкӧ, подувбердса пельӧс оз вермы лоны бурӧн ни ныжӧн.
+
'''Подулалӧм.''' Кыдз ми тӧдам нин, 1) ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ӧтыдждаӧсь, 2) бурпельӧса либӧ ныжпельӧса куимсэрӧгын эм кык ёсь пельӧс. Сідзкӧ, подувбердса пельӧс оз вермы лоны бурӧн ни ныжӧн.
  
===Бур пельӧса куимсэрӧгъяслысь ӧткодьлунсӧ тӧдмалан ног===
+
===Бурпельӧса ӧткодь куимсэрӧгъяслӧн тӧдмӧг===
 
====Кык катет серти.====
 
====Кык катет серти.====
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бур пельӧса куимсэрӧгъяс, кӧні ''AB'', ''BC'', ''A’B’'', ''B’C’'' — катетъяс, ''AB'' = ''A’B’'', ''BC'' = ''B’C’'', сэки ∆''ABC'' = ∆''A’B’C’''.
+
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бурпельӧса куимсэрӧгъяс, кӧні ''AB'', ''BC'', ''A’B’'', ''B’C’'' — катетъяс, ''AB'' = ''A’B’'', ''BC'' = ''B’C’'', сэки ∆''ABC'' = ∆''A’B’C’''.
  
 
[[Файл:2katet.jpg|thumb|center|330px|]]
 
[[Файл:2katet.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' ∠''ABC'' = ∠''A’B’C’'' = 90°, ''AB'' = ''A’B’'', ''BC'' = ''B’C’''; сідзкӧ, куимпельӧсаясыс ӧткодьӧсь [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81.D0.BB.D1.8B.D1.81.D1.8C_.D3.A7.D1.82.D0.BA.D0.BE.D0.B4.D1.8C.D0.BB.D1.83.D0.BD.D1.81.D3.A7_.D0.BC.D0.B5.D0.B4.D0.B2.D0.BE.D0.B4.D0.B4.D0.B7.D0.B0_.D1.82.D3.A7.D0.B4.D0.BC.D0.B0.D0.BB.D0.B0.D0.BD_.D0.BD.D0.BE.D0.B3 медводдза тӧдмалан ног серти].
+
'''Подулалӧм.''' ∠''ABC'' = ∠''A’B’C’'' = 90°, ''AB'' = ''A’B’'', ''BC'' = ''B’C’''; сідзкӧ, куимсэрӧгъясыс ӧткодьӧсь [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81.D0.BB.D1.8B.D1.81.D1.8C_.D3.A7.D1.82.D0.BA.D0.BE.D0.B4.D1.8C.D0.BB.D1.83.D0.BD.D1.81.D3.A7_.D0.BC.D0.B5.D0.B4.D0.B2.D0.BE.D0.B4.D0.B4.D0.B7.D0.B0_.D1.82.D3.A7.D0.B4.D0.BC.D0.B0.D0.BB.D0.B0.D0.BD_.D0.BD.D0.BE.D0.B3 медводдза тӧдмӧг серти].
 
====Катет да гипотенуза серти.====
 
====Катет да гипотенуза серти.====
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бур пельӧса куимсэрӧгъяс, кӧні ''AB'' да ''A’B’'' — катетъяс, ''AC'' да ''A’C’'' — гипотенузаяс, ''AB'' = ''A’B’'', ''AC'' = ''A’C’'', сэки ∆''ABC'' = ∆''A’B’C’''.
+
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бурпельӧса куимсэрӧгъяс, кӧні ''AB'' да ''A’B’'' — катетъяс, ''AC'' да ''A’C’'' — гипотенузаяс, ''AB'' = ''A’B’'', ''AC'' = ''A’C’'', сэки ∆''ABC'' = ∆''A’B’C’''.
  
 
[[Файл:Kat gip1.jpg|thumb|center|330px|]]
 
[[Файл:Kat gip1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D3.A6.D1.82.D0.BA.D0.BE.D0.B4.D1.8C_.D0.BA.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81 Аксиомаысь] петӧ: позьӧ гижтыны сэтшӧм ''KBM'' куимпельӧса, кӧні: 1) ∆''KBM'' = ∆''A’B’C’'', 2) ''M'' чут куйлӧ куйлӧ ''BC'' визь вылын, ''B'' чут куйлӧ ''C'' да ''M'' чутъяс костын, 3) ∆''KBM'' да ∆''ABC'' куйлӧны ''BC'' веськыд визь серти ӧти тшӧтшкӧсджынйын.  
+
'''Подулалӧм.''' [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D3.A6.D1.82.D0.BA.D0.BE.D0.B4.D1.8C_.D0.BA.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81 Аксиомаысь] петӧ: позьӧ гижтыны сэтшӧм ''KBM'' куимсэрӧг, кӧні: 1) ∆''KBM'' = ∆''A’B’C’'', 2) ''M'' чут куйлӧ куйлӧ ''BC'' визь вылын, ''B'' чут куйлӧ ''C'' да ''M'' чутъяс костын, 3) ∆''KBM'' да ∆''ABC'' куйлӧны ''BC'' веськыд визь серти ӧти тшӧтшкӧсджынйын.  
  
 
Медводдза серпас вылас ылӧсас индӧма, кутшӧм тшӧтшкӧсджынйын куйлӧ ''K'' чут. Сэсся ми сьӧрсьӧн-бӧрсьӧн кутам стӧчмӧдны сылысь инсӧ.  
 
Медводдза серпас вылас ылӧсас индӧма, кутшӧм тшӧтшкӧсджынйын куйлӧ ''K'' чут. Сэсся ми сьӧрсьӧн-бӧрсьӧн кутам стӧчмӧдны сылысь инсӧ.  
Строка 505: Строка 505:
 
[[Файл:Kat gip4 0.jpg|thumb|center|330px|]]
 
[[Файл:Kat gip4 0.jpg|thumb|center|330px|]]
  
Миян артмӧ ∆''CAM''. Сійӧ — ӧткодь берда куимпельӧса, кӧні ''AC'' да ''AM'' — боквыв доръяс, ''AB'' — судта. [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.92.D0.B5.D1.81.D1.8C.D0.BA.D1.8B.D0.B4_.D0.B2.D0.B8.D0.B7.D1.8C.D0.BB.D0.B0.D0.BD.D1.8C_.D0.BE.D1.80.D1.82.D1.81.D1.8B_.D1.87.D1.83.D1.82_.D0.BF.D1.8B.D1.80_.D0.B3.D0.B8.D0.B6.D1.82.D3.A7.D0.BC_.D0.BF.D0.B5.D1.80.D0.BF.D0.B5.D0.BD.D0.B4.D0.B8.D0.BA.D1.83.D0.BB.D1.8F.D1.80 Кыдзи ми тӧдам нин], подувлань гижтӧм судта лоӧ биссектрисаӧн. Миян артмӧ: ''AC'' = ''AM'', ∠''CAB'' = ∠''MAB''. Сідзкӧ, ∆''ABC'' = ∆''ABM'' медводдза тӧдмалан ног серти. Но ∆''ABM'' = ∆''KBM'' = ∆''A’B’C’''. Сійӧн ∆''ABC'' = ∆''A’B’C’''.
+
Миян артмӧ ∆''CAM''. Сійӧ — ӧткодь берда куимсэрӧг, кӧні ''AC'' да ''AM'' — боквыв доръяс, ''AB'' — судта. [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.92.D0.B5.D1.81.D1.8C.D0.BA.D1.8B.D0.B4_.D0.B2.D0.B8.D0.B7.D1.8C.D0.BB.D0.B0.D0.BD.D1.8C_.D0.BE.D1.80.D1.82.D1.81.D1.8B_.D1.87.D1.83.D1.82_.D0.BF.D1.8B.D1.80_.D0.B3.D0.B8.D0.B6.D1.82.D3.A7.D0.BC_.D0.BF.D0.B5.D1.80.D0.BF.D0.B5.D0.BD.D0.B4.D0.B8.D0.BA.D1.83.D0.BB.D1.8F.D1.80 Кыдзи ми тӧдам нин], подувлань гижтӧм судта лоӧ биссектрисаӧн. Миян артмӧ: ''AC'' = ''AM'', ∠''CAB'' = ∠''MAB''. Сідзкӧ, ∆''ABC'' = ∆''ABM'' медводдза тӧдмӧг серти. Но ∆''ABM'' = ∆''KBM'' = ∆''A’B’C’''. Сійӧн ∆''ABC'' = ∆''A’B’C’''.
  
 
====Катет да сы бердса ёсь пельӧс серти.====
 
====Катет да сы бердса ёсь пельӧс серти.====
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бур пельӧса куимсэрӧгъяс, кӧні ''AB'' да ''A’B’'' — катетъяс, ∠''A'' да ∠''A’'' — ёсь пельӧсъяс, ''AB'' = ''A’B’'', ∠''A'' = ∠''A’'', сэки ∆''ABC'' = ∆''A’B’C’''.
+
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бурпельӧса куимсэрӧгъяс, кӧні ''AB'' да ''A’B’'' — катетъяс, ∠''A'' да ∠''A’'' — ёсь пельӧсъяс, ''AB'' = ''A’B’'', ∠''A'' = ∠''A’'', сэки ∆''ABC'' = ∆''A’B’C’''.
  
 
[[Файл:Kat jos berd0.jpg|thumb|center|330px|]]
 
[[Файл:Kat jos berd0.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' ∠''B'' = ∠''B’'' = 90°, ''AB'' = ''A’B’'', ∠''A'' = ∠''A’''; сідзкӧ, куимпельӧсаясыс ӧткодьӧсь [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81.D0.BB.D1.8B.D1.81.D1.8C_.D3.A7.D1.82.D0.BA.D0.BE.D0.B4.D1.8C.D0.BB.D1.83.D0.BD.D1.81.D3.A7_.D0.BC.D3.A7.D0.B4_.D1.82.D3.A7.D0.B4.D0.BC.D0.B0.D0.BB.D0.B0.D0.BD_.D0.BD.D0.BE.D0.B3 мӧд тӧдмалан ног] серти.
+
'''Подулалӧм.''' ∠''B'' = ∠''B’'' = 90°, ''AB'' = ''A’B’'', ∠''A'' = ∠''A’''; сідзкӧ, куимсэрӧгъясыс ӧткодьӧсь [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81.D0.BB.D1.8B.D1.81.D1.8C_.D3.A7.D1.82.D0.BA.D0.BE.D0.B4.D1.8C.D0.BB.D1.83.D0.BD.D1.81.D3.A7_.D0.BC.D3.A7.D0.B4_.D1.82.D3.A7.D0.B4.D0.BC.D0.B0.D0.BB.D0.B0.D0.BD_.D0.BD.D0.BE.D0.B3 мӧд тӧдмӧг] серти.
  
 
====Катет да сылы паныд куйлысь ёсь пельӧс серти.====
 
====Катет да сылы паныд куйлысь ёсь пельӧс серти.====
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бур пельӧса куимсэрӧгъяс, кӧні ''AB'' да ''A’B’'' — катетъяс, ''AB'' = ''A’B’'', ∠''B'' = ∠''B’'' = 90°, ∠''C'' = ∠''C’'', сэки ∆''ABC'' = ∆''A’B’C’''.
+
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бурпельӧса куимсэрӧгъяс, кӧні ''AB'' да ''A’B’'' — катетъяс, ''AB'' = ''A’B’'', ∠''B'' = ∠''B’'' = 90°, ∠''C'' = ∠''C’'', сэки ∆''ABC'' = ∆''A’B’C’''.
  
 
[[Файл:Kat jos pan1.jpg|thumb|center|330px|]]
 
[[Файл:Kat jos pan1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D3.A6.D1.82.D0.BA.D0.BE.D0.B4.D1.8C_.D0.BA.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81 Аксиомаысь] петӧ: позьӧ гижтыны сэтшӧм ''KBM'' куимпельӧса, кӧні: 1) ∆''KBM'' = ∆''A’B’C’'', 2) ''M'' чут куйлӧ куйлӧ ''BC'' визь вылын, ''B'' чут куйлӧ ''C'' да ''M'' чутъяс костын, 3) ∆''KBM'' да ∆''ABC'' куйлӧны ''BC'' веськыд визь серти ӧти тшӧтшкӧсджынйын.
+
'''Подулалӧм.''' [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D3.A6.D1.82.D0.BA.D0.BE.D0.B4.D1.8C_.D0.BA.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81 Аксиомаысь] петӧ: позьӧ гижтыны сэтшӧм ''KBM'' куимсэрӧг, кӧні: 1) ∆''KBM'' = ∆''A’B’C’'', 2) ''M'' чут куйлӧ куйлӧ ''BC'' визь вылын, ''B'' чут куйлӧ ''C'' да ''M'' чутъяс костын, 3) ∆''KBM'' да ∆''ABC'' куйлӧны ''BC'' веськыд визь серти ӧти тшӧтшкӧсджынйын.
  
Татшӧм ''KBM'' куимпельӧсасӧ миян лӧсьӧдлім [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D0.B0.D1.82.D0.B5.D1.82_.D0.B4.D0.B0_.D0.B3.D0.B8.D0.BF.D0.BE.D1.82.D0.B5.D0.BD.D1.83.D0.B7.D0.B0_.D1.81.D0.B5.D1.80.D1.82.D0.B8. мӧд теоремасӧ] подулалігӧн. Сэки миян артмис: ''K'' = ''A''.
+
Татшӧм ''KBM'' куимсэрӧгсӧ миян лӧсьӧдлім [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D0.B0.D1.82.D0.B5.D1.82_.D0.B4.D0.B0_.D0.B3.D0.B8.D0.BF.D0.BE.D1.82.D0.B5.D0.BD.D1.83.D0.B7.D0.B0_.D1.81.D0.B5.D1.80.D1.82.D0.B8. мӧд теоремасӧ] подулалігӧн. Сэки миян артмис: ''K'' = ''A''.
  
 
Сідзкӧ ∆''ABM'' = ∆''A’B’C’''. Та вӧсна ∠''AMB'' = ∠''A’C’B’''. Но ∠''A’C’B’'' = ∠''ACB''. Сійӧн ∠''AMB'' = ∠''ACB''.
 
Сідзкӧ ∆''ABM'' = ∆''A’B’C’''. Та вӧсна ∠''AMB'' = ∠''A’C’B’''. Но ∠''A’C’B’'' = ∠''ACB''. Сійӧн ∠''AMB'' = ∠''ACB''.
Строка 527: Строка 527:
 
[[Файл:Kat jos pan3.jpg|thumb|center|330px|]]
 
[[Файл:Kat jos pan3.jpg|thumb|center|330px|]]
  
Кыдзи ми тӧдам нин, куимсэрӧгын кӧ эм кык ӧткодь пельӧс, тайӧ куимсэрӧгыс ӧткодь берда. Сідзкӧ ''ACM'' — ӧткодь берда куимпельӧса, ''CM'' — сылӧн подулыс, ''AB'' — сылӧн судтаыс. Татшӧмтор миян бара жӧ артмыліс нин [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D0.B0.D1.82.D0.B5.D1.82_.D0.B4.D0.B0_.D0.B3.D0.B8.D0.BF.D0.BE.D1.82.D0.B5.D0.BD.D1.83.D0.B7.D0.B0_.D1.81.D0.B5.D1.80.D1.82.D0.B8. мӧд теоремасӧ]  подулалігӧн; сыысь ми тӧдан нин, мый ∆''ABC'' = ∆''ABM'' = ∆''A’B’C’''.
+
Кыдзи ми тӧдам нин, куимсэрӧгын кӧ эм кык ӧткодь пельӧс, тайӧ куимсэрӧгыс ӧткодь берда. Сідзкӧ ''ACM'' — ӧткодь берда куимсэрӧг, ''CM'' — сылӧн подулыс, ''AB'' — сылӧн судтаыс. Татшӧмтор миян бара жӧ артмыліс нин [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D0.B0.D1.82.D0.B5.D1.82_.D0.B4.D0.B0_.D0.B3.D0.B8.D0.BF.D0.BE.D1.82.D0.B5.D0.BD.D1.83.D0.B7.D0.B0_.D1.81.D0.B5.D1.80.D1.82.D0.B8. мӧд теоремасӧ]  подулалігӧн; сыысь ми тӧдан нин, мый ∆''ABC'' = ∆''ABM'' = ∆''A’B’C’''.
  
 
====Гипотенуза да ёсь пельӧс серти.====
 
====Гипотенуза да ёсь пельӧс серти.====
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бур пельӧса куимсэрӧгъяс, кӧні ''AC'' да ''A’C’'' — гипотенузаяс, ''AC'' = ''A’C’'', ∠''A'' = ∠''A’'', сэки ∆''ABC'' = ∆''A’B’C’''.
+
'''Теорема.''' Кор ''ABC'' да ''A’B’C’'' — бурпельӧса куимсэрӧгъяс, кӧні ''AC'' да ''A’C’'' — гипотенузаяс, ''AC'' = ''A’C’'', ∠''A'' = ∠''A’'', сэки ∆''ABC'' = ∆''A’B’C’''.
  
 
[[Файл:Gip jos.jpg|thumb|center|330px|]]
 
[[Файл:Gip jos.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D3.A6.D1.82.D0.BA.D0.BE.D0.B4.D1.8C_.D0.BA.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81 Аксиомаысь] петӧ: позьӧ гижтыны сэтшӧм ''AKM'' куимпельӧса, кӧні: 1) ∆''AKM'' = ∆''A’B’C’'', 2) ''AK'' куйлӧ ''AB'' визьньӧвйын, 3) ∆''AKM'' да ∆''ABC'' куйлӧны ''AB'' веськыд визь серти торъя тшӧтшкӧсджынъясын.
+
'''Подулалӧм.''' [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D3.A6.D1.82.D0.BA.D0.BE.D0.B4.D1.8C_.D0.BA.D1.83.D0.B8.D0.BC.D0.BF.D0.B5.D0.BB.D1.8C.D3.A7.D1.81.D0.B0.D1.8F.D1.81 Аксиомаысь] петӧ: позьӧ гижтыны сэтшӧм ''AKM'' куимсэрӧг, кӧні: 1) ∆''AKM'' = ∆''A’B’C’'', 2) ''AK'' куйлӧ ''AB'' визьньӧвйын, 3) ∆''AKM'' да ∆''ABC'' куйлӧны ''AB'' веськыд визь серти торъя тшӧтшкӧсджынъясын.
  
 
Медводдза серпас вылас ылӧсас индӧма, кутшӧм визьньӧв вылын куйлӧ ''K'' чут да кутшӧм тшӧтшкӧсджынйын куйлӧ ''M'' чут. Сэсся ми сьӧрсьӧн-бӧрсьӧн кутам стӧчмӧдны налысь инсӧ.  
 
Медводдза серпас вылас ылӧсас индӧма, кутшӧм визьньӧв вылын куйлӧ ''K'' чут да кутшӧм тшӧтшкӧсджынйын куйлӧ ''M'' чут. Сэсся ми сьӧрсьӧн-бӧрсьӧн кутам стӧчмӧдны налысь инсӧ.  
Строка 572: Строка 572:
 
Та вӧсна ∆''ABC'' = ∆''A’B’C’''.
 
Та вӧсна ∆''ABC'' = ∆''A’B’C’''.
  
===Куимпельӧса ӧткодьтӧмлун===
+
===Куимсэрӧг ӧткодьтӧмлун===
  
'''Теорема.''' Куимпельӧсаын кык дорыслӧн ӧтувъя кузьта век лоӧ ыджыдджык коймӧд дор кузьтасьыс.
+
'''Теорема.''' Куимсэрӧгын кык дорыслӧн ӧтувъя кузьта век лоӧ ыджыдджык коймӧд дор кузьтасьыс.
  
 
[[Файл:Kuimp otkedtemlun.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp otkedtemlun.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Шуам, ''ABC'' куимпельӧсаын ''AC'' дор лоӧ медкузьӧн. Сідзкӧ ''AC'' вундӧгас позьӧ пуктыны ''D'' чут, медым ''AB'' = ''AD''. Миян артмӧ: ∆''DAB'' — ӧткодь берда куимсэрӧг, ''DB'' — сылӧн подулыс, ∠''ADB'' да ∠''ABD'' — сылӧн подувбердса пельӧсъяс.
+
'''Подулалӧм.''' Шуам, ''ABC'' куимсэрӧгын ''AC'' дор лоӧ медкузьӧн. Сідзкӧ ''AC'' вундӧгас позьӧ пуктыны ''D'' чут, медым ''AB'' = ''AD''. Миян артмӧ: ∆''DAB'' — ӧткодь берда куимсэрӧг, ''DB'' — сылӧн подулыс, ∠''ADB'' да ∠''ABD'' — сылӧн подувбердса пельӧсъяс.
  
 
[[Файл:Dor peljes otlastitem1.jpg|thumb|center|330px|]]
 
[[Файл:Dor peljes otlastitem1.jpg|thumb|center|330px|]]
  
Кыдзи ми тӧдам нин, подувбердса пельӧсыд век лоӧ ёсь. Сідзкӧ, ∠''ADB'' тшӧтш ёсь. Ёсь пельӧскӧд орчча пельӧс век лоӧ ныж. Сійӧн ∠''BDC'' — ныж пельӧс. Миян артмӧ: ''BDC'' куимпельӧсаын ∠''BDC'' медыджыд. Кыдзи ми тӧдам нин, медыджыд пельӧслы паныд куйлӧ медкузь дор. Сы понда ''BC'' > ''DC''.  
+
Кыдзи ми тӧдам нин, подувбердса пельӧсыд век лоӧ ёсь. Сідзкӧ, ∠''ADB'' тшӧтш ёсь. Ёсь пельӧскӧд орчча пельӧс век лоӧ ныж. Сійӧн ∠''BDC'' — ныж пельӧс. Миян артмӧ: ''BDC'' куимсэрӧгын ∠''BDC'' медыджыд. Кыдзи ми тӧдам нин, медыджыд пельӧслы паныд куйлӧ медкузь дор. Сы понда ''BC'' > ''DC''.  
  
 
Миян артмӧ:  
 
Миян артмӧ:  
Строка 603: Строка 603:
 
[[Файл:Parallal veskyd perp.jpg|thumb|center|330px|]]
 
[[Файл:Parallal veskyd perp.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм''' (паныдсянь). Тайӧ кык веськыд визь кӧ вомӧнасисны, найӧ вомӧнасянінысь позис эськӧ гижтыны коймӧд веськыд визьлань кык торъялана перпендикуляр. Но, кыдзи ми тӧдам нин, тайӧс вӧчны он вермы.
+
'''Подулалӧм''' (паныдсянь). Тайӧ кык веськыд визь кӧ вомӧнасисны, найӧ вомӧнасянінысь позис эськӧ гижтыны коймӧд веськыд визьлань кык торъялана перпендикуляр. Но, кыдзи ми тӧдам нин, тайӧс вӧчны он вермы.
  
 
(татчӧ колӧ серпас)
 
(татчӧ колӧ серпас)
Строка 609: Строка 609:
 
'''Теорема.''' Чутыс кӧ оз куйлы веськыд визь вылын, сэтшӧм чут пыр позьӧ гижтыны тайӧ веськыд визьлы параллель.
 
'''Теорема.''' Чутыс кӧ оз куйлы веськыд визь вылын, сэтшӧм чут пыр позьӧ гижтыны тайӧ веськыд визьлы параллель.
  
'''Эскӧдӧм.''' Мед миян эм ''m'' веськыд визь да ''A'' чут, коді оз куйлы сы вылын. Гижтам ''A'' чутысь ''m''-лань перпендикуляр (пасъям сійӧс ''l''). Сэсся ''A'' чут пыр гижтам ''l''-лы перпендикуляр (пасъям сійӧс ''n''). Миян артмӧ: ''l'' лоӧ перпендикулярӧн ''m''-лы да ''n''-лы. Сідзкӧ, ''m'' да ''n'' параллельяс (воддза теорема серти).
+
'''Подулалӧм.''' Мед миян эм ''m'' веськыд визь да ''A'' чут, коді оз куйлы сы вылын. Гижтам ''A'' чутысь ''m''-лань перпендикуляр (пасъям сійӧс ''l''). Сэсся ''A'' чут пыр гижтам ''l''-лы перпендикуляр (пасъям сійӧс ''n''). Миян артмӧ: ''l'' лоӧ перпендикулярӧн ''m''-лы да ''n''-лы. Сідзкӧ, ''m'' да ''n'' параллельяс (воддза теорема серти).
  
 
[[Файл:Parall nuedem1.jpg|thumb|center|330px|]]
 
[[Файл:Parall nuedem1.jpg|thumb|center|330px|]]
  
===Параллельлун тӧдмалан ног===
+
===Параллель визьяслӧн тӧдмӧг===
  
  ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс – внутренние накрест лежащие углы
+
  пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс – внутренние накрест лежащие углы
  ӧтар-мӧдар куйлысь ортсы пельӧсъяс – внешние накрест лежащие углы
+
  ортсыса ӧтар-мӧдар куйлысь пельӧсъяс – внешние накрест лежащие углы
  ӧтарбокса пытшкӧс пельӧсъяс – внутренние односторонние углы
+
  пытшкӧсса ӧтарбокса пельӧсъяс – внутренние односторонние углы
  ӧтарбокса ортсы пельӧсъяс – внешние односторонние углы
+
  ортсыса ӧтарбокса пельӧсъяс – внешние односторонние углы
 
  весьтаса пельӧсъяс – соответственные углы
 
  весьтаса пельӧсъяс – соответственные углы
  
 
Гижтам кык веськыд визь да нӧшта ӧти визь, коді найӧс вомӧналӧ. Тайӧ вомӧналысь визь серти позьӧ пасйыны татшӧм пельӧсъяс (петкӧдлӧма серпас вылын):
 
Гижтам кык веськыд визь да нӧшта ӧти визь, коді найӧс вомӧналӧ. Тайӧ вомӧналысь визь серти позьӧ пасйыны татшӧм пельӧсъяс (петкӧдлӧма серпас вылын):
 
   
 
   
*ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс,  
+
*пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс,  
  
 
[[Файл:Pyts padv pel1.jpg|thumb|center|330px|]]
 
[[Файл:Pyts padv pel1.jpg|thumb|center|330px|]]
  
*ӧтар-мӧдар куйлысь ортсы пельӧсъяс,  
+
*ортсыса ӧтар-мӧдар куйлысь пельӧсъяс,  
  
 
[[Файл:Orts padv pel.jpg|thumb|center|330px|]]
 
[[Файл:Orts padv pel.jpg|thumb|center|330px|]]
  
*ӧтарбокса пытшкӧс пельӧсъяс,  
+
*пытшкӧсса ӧтарбокса пельӧсъяс,  
  
 
[[Файл:Pyts etarboksa.jpg|thumb|center|330px|]]
 
[[Файл:Pyts etarboksa.jpg|thumb|center|330px|]]
  
*ӧтарбокса ортсы пельӧсъяс.
+
*ортсыса ӧтарбокса пельӧсъяс,
  
 
[[Файл:Orts etarboksa.jpg|thumb|center|330px|]]
 
[[Файл:Orts etarboksa.jpg|thumb|center|330px|]]
  
*весьтаса пельӧсъяс,
+
*весьтаса пельӧсъяс.
  
 
[[Файл:Vestasa.jpg|thumb|center|330px|]]
 
[[Файл:Vestasa.jpg|thumb|center|330px|]]
Строка 645: Строка 645:
 
(петкӧдлыны серпас вылын став вариант − 2, 2, 2, 2, 4)
 
(петкӧдлыны серпас вылын став вариант − 2, 2, 2, 2, 4)
  
'''Теорема.''' Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.
+
'''Теорема.''' Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.
  
 
[[Файл:Parall tedm1.jpg|thumb|center|330px|]]
 
[[Файл:Parall tedm1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Эм кык веськыд визь: ''AC'' да ''BD''; найӧс вомӧналӧ нӧшта ӧти визь: ''AB''; та дырйи ∠''ABD'' = ∠''BAC''. Пасъям ''AB'' вундӧглысь шӧрчутсӧ ''M'' шыпасӧн. Гижтам ''M'' чут пыр ''AC'' веськыд визьлань ''MP'' перпендикуляр. Чут, кӧні сійӧ вомӧнасьӧ ''BD''-кӧд, пасъям ''Q'' шыпасӧн. ∠''AMP'' да ∠''BMQ'' — вертикаль пельӧсъяс, та вӧсна найӧ ӧтыдждаӧсь. Сідзкӧ, ∆''AMP'' = ∆''BMQ'' мӧд тӧдмалан ног серти. Сэк и ∠''BQM'' = ∠''APM''. ''MP'' лоӧ '' AC''‐лы перпендикуляр, сійӧн ∠''APM'' = 90°; сідзкӧ и ∠''BQM'' = 90°. Миян артмӧ: ''BQ'' да ''AP'' веськыд визьяс лоӧны ''PQ'' веськыд визьлы перпендикуляръясӧн. Сідзкӧ, найӧ куйлӧны мӧда-мӧдлы параллель ногӧн водзджык подулалӧм теорема серти.
+
'''Подулалӧм.''' Эм кык веськыд визь: ''AC'' да ''BD''; найӧс вомӧналӧ нӧшта ӧти визь: ''AB''; та дырйи ∠''ABD'' = ∠''BAC''. Пасъям ''AB'' вундӧглысь шӧрчутсӧ ''M'' шыпасӧн. Гижтам ''M'' чут пыр ''AC'' веськыд визьлань ''MP'' перпендикуляр. Чут, кӧні сійӧ вомӧнасьӧ ''BD''-кӧд, пасъям ''Q'' шыпасӧн. ∠''AMP'' да ∠''BMQ'' — вертикаль пельӧсъяс, та вӧсна найӧ ӧтыдждаӧсь. Сідзкӧ, ∆''AMP'' = ∆''BMQ'' мӧд тӧдмӧг серти. Сэк и ∠''BQM'' = ∠''APM''. ''MP'' лоӧ '' AC''‐лы перпендикуляр, сійӧн ∠''APM'' = 90°; сідзкӧ и ∠''BQM'' = 90°. Миян артмӧ: ''BQ'' да ''AP'' веськыд визьяс лоӧны ''PQ'' веськыд визьлы перпендикуляръясӧн. Сідзкӧ, найӧ куйлӧны мӧда-мӧдлы параллель ногӧн водзджык подулалӧм теорема серти.
  
'''Теорема.''' Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти ӧтар-мӧдар куйлысь ортсы пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.
+
'''Теорема.''' Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти ортсыса ӧтар-мӧдар куйлысь пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.
  
'''Эскӧдӧм.''' Мед ∠1, ∠2 – ӧтар-мӧдар куйлысь ортсы пельӧсъяс, ∠1 = ∠2.
+
'''Подулалӧм.''' Мед ∠1, ∠2 – ортсыса ӧтар-мӧдар куйлысь пельӧсъяс, ∠1 = ∠2.
  
 
[[Файл:Parall tedm2.jpg|thumb|center|330px|]]
 
[[Файл:Parall tedm2.jpg|thumb|center|330px|]]
  
∠1 = ∠3, ∠2 = ∠4 кыдзи вертикаль пельӧсъяс. Сідзкӧ, ∠3 = ∠4. Тайӧ пельӧсъясыс – ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс. Воддза теорема серти, веськыд визьясыс параллель ногаӧсь.
+
∠1 = ∠3, ∠2 = ∠4 кыдзи вертикаль пельӧсъяс. Сідзкӧ, ∠3 = ∠4. Тайӧ пельӧсъясыс – пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс. Воддза теорема серти, веськыд визьясыс параллель ногаӧсь.
  
'''Теорема.'''  Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти ӧтарбокса пытшкӧс либӧ ортсы пельӧсъяслӧн суммаыс кӧ 180°, веськыд визьясыс параллель ногаӧсь.
+
'''Теорема.'''  Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти ӧтарбокса пытшкӧсса либӧ ортсыса пельӧсъяслӧн суммаыс кӧ 180°, веськыд визьясыс параллель ногаӧсь.
  
'''Эскӧдӧм.''' Мед ∠1, ∠2 – ӧтарбокса пытшкӧс пельӧсъяс, ∠1 + ∠2 = 180°.  
+
'''Подулалӧм.''' Мед ∠1, ∠2 – пытшкӧсса ӧтарбокса пельӧсъяс, ∠1 + ∠2 = 180°.  
  
 
[[Файл:Parall tedm3.jpg|thumb|center|330px|]]
 
[[Файл:Parall tedm3.jpg|thumb|center|330px|]]
  
∠2 да ∠3 орччаӧсь, та вӧсна ∠2 + ∠3 = 180°. Сідзкӧ, ∠1 = ∠3. ∠1 да ∠3 ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс; водзджык подулалӧм теорема серти та дырйи веськыд визьясыс лоӧны параллель ногаӧсь.
+
∠2 да ∠3 орччаӧсь, та вӧсна ∠2 + ∠3 = 180°. Сідзкӧ, ∠1 = ∠3. ∠1 да ∠3 пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс; водзджык подулалӧм теорема серти та дырйи веськыд визьясыс лоӧны параллель ногаӧсь.
  
Ӧтарбокса ортсы пельӧсъяслӧн суммаыс кӧ 180° ыджда, теоремасӧ подулалам сэтшӧм жӧ ногӧн.
+
Ортсыса ӧтарбокса пельӧсъяслӧн суммаыс кӧ 180° ыджда, теоремасӧ подулалам сэтшӧм жӧ ногӧн.
  
 
'''Теорема.''' Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти весьтаса пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.
 
'''Теорема.''' Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти весьтаса пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.
  
'''Эскӧдӧм.''' Мед ∠1, ∠2 – весьтаса пельӧсъяс, ∠1 = ∠2.  
+
'''Подулалӧм.''' Мед ∠1, ∠2 – весьтаса пельӧсъяс, ∠1 = ∠2.  
  
 
[[Файл:Parall tedm4 1.jpg|thumb|center|330px|]]
 
[[Файл:Parall tedm4 1.jpg|thumb|center|330px|]]
  
∠1 да ∠3 — вертикаль пельӧсъяс, та вӧсна ∠1 = ∠3. Сідзкӧ ∠2 = ∠3. Но ∠2 да ∠3 — ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс. А водзджык подулалӧм теорема серти та дырйи веськыд визьясыс лоӧны параллель ногаӧсь.
+
∠1 да ∠3 — вертикаль пельӧсъяс, та вӧсна ∠1 = ∠3. Сідзкӧ ∠2 = ∠3. Но ∠2 да ∠3 — пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс. А водзджык подулалӧм теорема серти та дырйи веськыд визьясыс лоӧны параллель ногаӧсь.
  
 
===Параллель йылысь аксиома===
 
===Параллель йылысь аксиома===
Строка 685: Строка 685:
 
'''Теорема.''' Кык торъялана веськыд визь кӧ лоӧны параллельясӧн коймӧд веськыд визьлы, найӧ лоӧны ӧта-мӧдыслы параллельясӧн.
 
'''Теорема.''' Кык торъялана веськыд визь кӧ лоӧны параллельясӧн коймӧд веськыд визьлы, найӧ лоӧны ӧта-мӧдыслы параллельясӧн.
  
'''Эскӧдӧм.''' Мед ''a'' да ''b'' веськыд визьяс лоӧны ''c'' веськыд визьлы параллельясӧн. Найӧ кӧ вомӧнасьӧны кутшӧмкӧ чутын, тайӧ чут пырыс мунӧ ''c''-лы кык торъялана параллель. Тайӧ оз лӧсяв аксиомакӧд.
+
'''Подулалӧм.''' Мед ''a'' да ''b'' веськыд визьяс лоӧны ''c'' веськыд визьлы параллельясӧн. Найӧ кӧ вомӧнасьӧны кутшӧмкӧ чутын, тайӧ чут пырыс мунӧ ''c''-лы кык торъялана параллель. Тайӧ оз лӧсяв аксиомакӧд.
  
 
[[Файл:Par transit.jpg|thumb|center|330px|]]
 
[[Файл:Par transit.jpg|thumb|center|330px|]]
Строка 691: Строка 691:
 
===Параллель нога веськыд визьяслӧн аслунъяс===
 
===Параллель нога веськыд визьяслӧн аслунъяс===
  
'''Теорема.''' Кор параллель ногӧн куйлысь кык веськыд визьсӧ вомӧналӧ коймӧд веськыд визь, сэки артмӧм ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс ӧтыдждаӧсь.
+
'''Теорема.''' Кор параллель ногӧн куйлысь кык веськыд визьсӧ вомӧналӧ коймӧд веськыд визь, сэки артмӧм пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс ӧтыдждаӧсь.
  
'''Эскӧдӧм.''' Мед ''AD'' да ''BC'' параллельяс, ''AB'' веськыд визь найӧс вомӧналӧ. Миянлы колӧ петкӧдлыны: ∠''DAB'' = ∠''CBA''.
+
'''Подулалӧм.''' Мед ''AD'' да ''BC'' параллельяс, ''AB'' веськыд визь найӧс вомӧналӧ. Миянлы колӧ петкӧдлыны: ∠''DAB'' = ∠''CBA''.
  
 
(серпас)
 
(серпас)
  
Гижтам ''A'' чут пыр ''AE'' веськыд визь сідзи, медым ∠''EAB'' = ∠''CBA''. Кыдзи ми тӧдам нин, ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс лоӧны параллельясӧн. Сійӧн ''EA''-лы да ''BC''-лы быть лоны параллельясӧн.  
+
Гижтам ''A'' чут пыр ''AE'' веськыд визь сідзи, медым ∠''EAB'' = ∠''CBA''. Кыдзи ми тӧдам нин, пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс лоӧны параллельясӧн. Сійӧн ''EA''-лы да ''BC''-лы быть лоны параллельясӧн.  
  
 
Мый эськӧ вӧлі, ∠''DAB'' да ∠''CBA'' кӧ эз вӧвны ӧтыдждаӧсь? Сэки ''AD'' да ''AE'' вӧліны эськӧ торъялана веськыд визьясӧн, кыдзи петкӧдлӧма серпас вылын.
 
Мый эськӧ вӧлі, ∠''DAB'' да ∠''CBA'' кӧ эз вӧвны ӧтыдждаӧсь? Сэки ''AD'' да ''AE'' вӧліны эськӧ торъялана веськыд визьясӧн, кыдзи петкӧдлӧма серпас вылын.
Строка 705: Строка 705:
 
Та дырйи ''A'' чут пыр муніс эськӧ ''BC''-лы торъялана кык параллель: ''AD'' да ''AE'', а тайӧ оз лӧсяв аксиомакӧд.
 
Та дырйи ''A'' чут пыр муніс эськӧ ''BC''-лы торъялана кык параллель: ''AD'' да ''AE'', а тайӧ оз лӧсяв аксиомакӧд.
  
'''Теорема.''' Параллель ногӧн куйлысь кык веськыд визьсӧ кӧ вомӧналӧ коймӧд веськыд визь, сысянь ӧтар-мӧдар куйлысь ортсы пельӧсъяс ӧтыдждаӧсь.
+
'''Теорема.''' Параллель ногӧн куйлысь кык веськыд визьсӧ кӧ вомӧналӧ коймӧд веськыд визь, сысянь ортсыса ӧтар-мӧдар куйлысь пельӧсъяс ӧтыдждаӧсь.
  
 
[[Файл:Omo par.jpg|thumb|center|330px|]]
 
[[Файл:Omo par.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Гижтам серпас, кӧні ∠1 да ∠2 – ӧтар-мӧдар куйлысь ортсы пельӧсъяс.  
+
'''Подулалӧм.''' Гижтам серпас, кӧні ∠1 да ∠2 – ортсыса ӧтар-мӧдар куйлысь пельӧсъяс.  
  
 
* Та дырйи ∠1 = ∠3, ∠2 = ∠4, ставныс вертикаль пельӧсъяс да сійӧн;
 
* Та дырйи ∠1 = ∠3, ∠2 = ∠4, ставныс вертикаль пельӧсъяс да сійӧн;
* а ∠3 = ∠4, найӧ ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс да (воддза теорема серти).
+
* а ∠3 = ∠4, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да (воддза теорема серти).
  
 
Сідзкӧ ∠1 = ∠2.
 
Сідзкӧ ∠1 = ∠2.
Строка 720: Строка 720:
 
[[Файл:Ort otar.jpg|thumb|center|330px|]]
 
[[Файл:Ort otar.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ∠1 да ∠2 — ӧтарбокса пытшкӧс пельӧсъяс. Серпас вылысь ми аддзам:
+
'''Подулалӧм.''' Мед ∠1 да ∠2 — пытшкӧсса ӧтарбокса пельӧсъяс. Серпас вылысь ми аддзам:
 
* ∠1 да ∠3 орчча пельӧсъяс, та вӧсна ∠1 + ∠3 = 180°;
 
* ∠1 да ∠3 орчча пельӧсъяс, та вӧсна ∠1 + ∠3 = 180°;
* ∠3 = ∠2, найӧ ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс да сійӧн ӧткодьӧсь (теорема серти).
+
* ∠3 = ∠2, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да сійӧн ӧткодьӧсь (теорема серти).
  
 
Сідзкӧ ∠1 + ∠2 = 180°.
 
Сідзкӧ ∠1 + ∠2 = 180°.
  
Ӧтарбокса ортсы пельӧсъяс йылысь теоремасӧ подулалам сэтшӧм жӧ ногӧн.
+
Ортсыса ӧтарбокса пельӧсъяс йылысь теоремасӧ подулалам сэтшӧм жӧ ногӧн.
  
 
'''Теорема.''' Кор параллель ногӧн куйлысь кык веськыд визьсӧ вомӧналӧ коймӧд веськыд визь, сэки весьтаса пельӧсъяс ӧтыдждаӧсь.
 
'''Теорема.''' Кор параллель ногӧн куйлысь кык веськыд визьсӧ вомӧналӧ коймӧд веськыд визь, сэки весьтаса пельӧсъяс ӧтыдждаӧсь.
Строка 732: Строка 732:
 
[[Файл:Par vest1.jpg|thumb|center|330px|]]
 
[[Файл:Par vest1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ∠1 да ∠2 — весьтаса пельӧсъяс. Серпас вылысь ми аддзам:
+
'''Подулалӧм.''' Мед ∠1 да ∠2 — весьтаса пельӧсъяс. Серпас вылысь ми аддзам:
 
* ∠2 = ∠3, найӧ вертикаль пельӧсъяс да сійӧн ӧтыдждаӧсь;
 
* ∠2 = ∠3, найӧ вертикаль пельӧсъяс да сійӧн ӧтыдждаӧсь;
*∠1 = ∠3, найӧ ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс да сійӧн ӧткодьӧсь (теорема серти).
+
*∠1 = ∠3, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да сійӧн ӧткодьӧсь (теорема серти).
 
Сідзкӧ ∠1 = ∠2.
 
Сідзкӧ ∠1 = ∠2.
  
Строка 743: Строка 743:
 
[[Файл:Kuimp180.jpg|thumb|center|330px|]]
 
[[Файл:Kuimp180.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABC'' — куимпельӧса. Арталам сы пельӧсъяслысь суммасӧ: ∠''BAC'' + ∠''ABC'' + ∠''BCA''. Та могысь гижтам ''B'' чут пыр ''AC''-лы параллель ногӧн ''DE'' веськыд визьсӧ. Кыдзи аддзам, ∠''DBA'', ∠''ABC'' да ∠''EBC'' ӧтув артмӧдӧны павтыртӧм пельӧс, сылӧн ыдждаыс 180°. Сы вӧсна мый ∠''DBA'' = ∠''BAC'', ∠''EBC'' = ∠''BCA'' (найӧ ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс да), ∠''BAC'', ∠''ABC'' да ∠''BCA'' ӧтув тшӧтш сетасны 180° ыджда. Мӧд ног шуны, ∠''BAC'' + ∠''ABC'' + ∠''BCA'' = 180°.
+
'''Подулалӧм.''' Мед ''ABC'' — куимсэрӧг. Арталам сы пельӧсъяслысь суммасӧ: ∠''BAC'' + ∠''ABC'' + ∠''BCA''. Та могысь гижтам ''B'' чут пыр ''AC''-лы параллель ногӧн ''DE'' веськыд визьсӧ. Кыдзи аддзам, ∠''DBA'', ∠''ABC'' да ∠''EBC'' ӧтув артмӧдӧны павтыртӧм пельӧс, сылӧн ыдждаыс 180°. Сы вӧсна мый ∠''DBA'' = ∠''BAC'', ∠''EBC'' = ∠''BCA'' (найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да), ∠''BAC'', ∠''ABC'' да ∠''BCA'' ӧтув тшӧтш сетасны 180° ыджда. Мӧд ног шуны, ∠''BAC'' + ∠''ABC'' + ∠''BCA'' = 180°.
  
 
'''Теорема.''' Куимсэрӧглӧн ортсы пельӧсыс лоӧ сылы абу орчча пытшкӧс пельӧсъяс суммакӧд ӧтыджда.
 
'''Теорема.''' Куимсэрӧглӧн ортсы пельӧсыс лоӧ сылы абу орчча пытшкӧс пельӧсъяс суммакӧд ӧтыджда.
Строка 749: Строка 749:
 
[[Файл:Ortsy pel.jpg|thumb|center|330px|]]
 
[[Файл:Ortsy pel.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABC'' — куимпельӧса, ∠''ABD'' — сылӧн ортсы пельӧс. Миянлы колӧ артмӧдны: ∠''ABD'' = ∠''BAC'' + ∠''BCA''. Кыдзи аддзам, ∠''ABD'' + ∠''ABC'' = 180°, найӧ орчча пельӧсъяс да. Сійӧн ∠''ABD'' = 180° – ∠''ABC''. Воддза теорема серти кӧ, ∠''BAC'' + ∠''ABC'' + ∠''BCA'' = 180°. Сійӧн 180° – ∠''ABC'' = ∠''BAC'' + ∠''BCA''. А сідзкӧ, ∠''ABD'' = ∠''BAC'' + ∠''BCA''.
+
'''Подулалӧм.''' Мед ''ABC'' — куимсэрӧг, ∠''ABD'' — сылӧн ортсы пельӧс. Миянлы колӧ артмӧдны: ∠''ABD'' = ∠''BAC'' + ∠''BCA''. Кыдзи аддзам, ∠''ABD'' + ∠''ABC'' = 180°, найӧ орчча пельӧсъяс да. Сійӧн ∠''ABD'' = 180° – ∠''ABC''. Воддза теорема серти кӧ, ∠''BAC'' + ∠''ABC'' + ∠''BCA'' = 180°. Сійӧн 180° – ∠''ABC'' = ∠''BAC'' + ∠''BCA''. А сідзкӧ, ∠''ABD'' = ∠''BAC'' + ∠''BCA''.
  
 
'''Теорема.''' Ӧткодь доръяса куимсэрӧгын быд пельӧсыс 60° ыджда.
 
'''Теорема.''' Ӧткодь доръяса куимсэрӧгын быд пельӧсыс 60° ыджда.
  
'''Эскӧдӧм.''' Кыдзи ми тӧдам нин, ӧткодь доръяса куимсэрӧгын став пельӧсыс ӧтыдждаӧсь, а суммаын найӧ сетӧны 180°. Сідзкӧ, быд пельӧсыс лоӧ 180° : 3 = 60° ыджда.
+
'''Подулалӧм.''' Кыдзи ми тӧдам нин, ӧткодь доръяса куимсэрӧгын став пельӧсыс ӧтыдждаӧсь, а суммаын найӧ сетӧны 180°. Сідзкӧ, быд пельӧсыс лоӧ 180° : 3 = 60° ыджда.
  
 
'''Теорема.''' Бурпельӧса куимсэрӧгын ёсь пельӧсъясыслӧн суммаыс 90° ыджда.
 
'''Теорема.''' Бурпельӧса куимсэрӧгын ёсь пельӧсъясыслӧн суммаыс 90° ыджда.
Строка 759: Строка 759:
 
[[Файл:Veskyd kuimp 90 1.jpg|thumb|center|330px|]]
 
[[Файл:Veskyd kuimp 90 1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABC'' куимпельӧсаын ∠''B'' = 90°. Кыдзи ми тӧдам нин, ∠''A'' + ∠''B'' + ∠''C'' = 180°. Сідзкӧ ∠''A'' + ∠''C'' = 180° – ∠''B'' = 90°.
+
'''Подулалӧм.''' Мед ''ABC'' куимсэрӧгын ∠''B'' = 90°. Кыдзи ми тӧдам нин, ∠''A'' + ∠''B'' + ∠''C'' = 180°. Сідзкӧ ∠''A'' + ∠''C'' = 180° – ∠''B'' = 90°.
  
 
'''Теорема.''' Бурпельӧса ӧткодь берда куимсэрӧгын кыкнан ёсь пельӧсыс 45° ыдждаӧсь.
 
'''Теорема.''' Бурпельӧса ӧткодь берда куимсэрӧгын кыкнан ёсь пельӧсыс 45° ыдждаӧсь.
  
'''Эскӧдӧм.''' Кыдзи ми тӧдам нин, бурпельӧса ӧткодь берда куимсэрӧгын ёсь пельӧсъясыс ӧтыдждаӧсь, а суммаын найӧ сетӧны 90°. Сідзкӧ, быд ёсь пельӧсыс лоӧ 90° : 2 = 45° ыджда.
+
'''Подулалӧм.''' Кыдзи ми тӧдам нин, бурпельӧса ӧткодь берда куимсэрӧгын ёсь пельӧсъясыс ӧтыдждаӧсь, а суммаын найӧ сетӧны 90°. Сідзкӧ, быд ёсь пельӧсыс лоӧ 90° : 2 = 45° ыджда.
  
 
[[Файл:45 60 peljesjas.jpg|thumb|center|330px|]]
 
[[Файл:45 60 peljesjas.jpg|thumb|center|330px|]]
 +
 +
'''Теорема.''' Бурпельӧса куимсэрӧгын кӧ ӧти ёсь пельӧсыс 30° ыджда, сылы паныда катетыс лоӧ гипотенуза джын кузьта.
 +
 +
[[Файл:Kuimp30.jpg|thumb|center|330px|]]
 +
 +
'''Подулалӧм.''' Мед ''ABC'' — бурпельӧса куимсэрӧг, кӧні ∠''A'' = 30°, ∠''B'' = 90°. Сідзкӧ ∠''C'' = 90° – 30° = 60°. Нюжӧдам ''BC'' дорсӧ ''B'' чут сайӧ да пуктам ''CB'' визьньӧв вылӧ ''D'' чут сідзи, медым ''B'' вӧлі ''CD'' вундӧглӧн шӧр чутнас. Гижтам ''AD'' вундӧг. Миян артмӧ: ∠''ABD'' = 180° – ∠''ABC'' = 90°; ''BD'' = ''BC''. Сідзкӧ ''ABD'' да ''ABC'' куимсэрӧгъясыд кык катет сертиныс ӧткодьӧсь. Та вӧсна ∠''ADB'' = ∠''ACB'' = 60°, ∠''BAD'' = ∠''BAC'' = 30°. Видлалам ''CAD'' куимсэрӧг. Сыын ∠''ACD'' = ∠''ADC'' = 60°, ∠''DAC'' = ∠''BAD'' + ∠''BAC'' = 60°. Сідзкӧ ∠''ACD'' = ∠''ADC'' = ∠''DAC''. Кыдзи ми тӧдам нин, куимсэрӧгын кӧ став пельӧсыс ӧтыджда, тайӧ куимсэрӧгыс ӧткодь доръяса. Сідзкӧ ''AC'' = ''CD''. Но ''BC'' = ''CD''/2. Со миян и артмис: ''BC'' = ''AC''/2.
 +
 +
'''Теорема.''' Бурпельӧса куимсэрӧгын кӧ ӧти катетыс лоӧ гипотенуза джын кузьта, тайӧ катетыслы паныд куйлӧ 30° ыджда пельӧс.
 +
 +
[[Файл:Kuimp1 2.jpg|thumb|center|330px|]]
 +
 +
'''Подулалӧм.''' Мед ''ABC'' — бурпельӧса куимсэрӧг, кӧні ∠''B'' = 90°, ''BC'' = ''AC''/2. Нюжӧдам ''BC'' дорсӧ ''B'' чут сайӧ да пуктам ''CB'' визьньӧв вылӧ ''D'' чут сідзи, медым ''B'' вӧлі ''CD'' вундӧглӧн шӧр чутнас. Гижтам ''AD'' вундӧг. Миян артмӧ: ∠''ABD'' = 180° – ∠''ABC'' = 90°; ''BD'' = ''BC''. Сідзкӧ ''ABD'' да ''ABC'' куимсэрӧгъясыд кык катет сертиныс ӧткодьӧсь. Та вӧсна ''AD'' = ''AC''. Видлалам ''CAD'' куимсэрӧг. Сыын ''AD'' = ''AC'', ''CD'' = 2''BC'' = ''AC''. Сідзкӧ тайӧ куимсэрӧгыс ӧткодь доръяса. Кыдзи ми тӧдам нин, татшӧм куимсэрӧгын став пельӧсыс 60° ыджда. Сідзкӧ ∠''ACB'' = 60°, ∠''BAC'' = 90° – 60° = 30°.
  
 
==Нёльпельӧсаяс (нёльсэрӧгъяс)==
 
==Нёльпельӧсаяс (нёльсэрӧгъяс)==
Строка 791: Строка 803:
 
[[Файл:Voca jyv dor.jpg|thumb|center|330px|]]
 
[[Файл:Voca jyv dor.jpg|thumb|center|330px|]]
  
===Нёльпельӧсаын пельӧсъяслӧн суммаыс===
+
===Нёльсэрӧгын пельӧсъяслӧн суммаыс===
  
 
'''Теорема.''' Нёльсэрӧгын став пельӧслӧн суммаыс 360° ыджда.
 
'''Теорема.''' Нёльсэрӧгын став пельӧслӧн суммаыс 360° ыджда.
Строка 797: Строка 809:
 
[[Файл:Njolp sum.jpg|thumb|center|330px|]]
 
[[Файл:Njolp sum.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Гижтам нёльсэрӧг пытшкас диагональ (серпас вылын тайӧ ''AC''), коді юкӧ сійӧс кык куимсэрӧг вылӧ. Миян артмӧ: ∠''A'' + ∠''B'' + ∠''C'' + ∠''D'' = ∠''BAC'' + ∠''ABC'' + ∠''BCA'' + ∠''CAD'' + ∠''ADC'' + ∠''ADC'' = 180° + 180° = 360°.
+
'''Подулалӧм.''' Гижтам нёльсэрӧг пытшкас диагональ (серпас вылын тайӧ ''AC''), коді юкӧ сійӧс кык куимсэрӧг вылӧ. Миян артмӧ: ∠''A'' + ∠''B'' + ∠''C'' + ∠''D'' = ∠''BAC'' + ∠''ABC'' + ∠''BCA'' + ∠''CAD'' + ∠''ADC'' + ∠''ADC'' = 180° + 180° = 360°.
  
 
===Параллелограмм===
 
===Параллелограмм===
Строка 805: Строка 817:
 
[[Файл:Parallelogr.jpg|thumb|center|330px|]]
 
[[Файл:Parallelogr.jpg|thumb|center|330px|]]
  
====Параллелограммсӧ тӧдмалан ногъяс====
+
====Параллелограммлӧн тӧдмӧгъяс====
  
'''1-ӧд тӧдмалан ног.'''
+
'''1-ӧд тӧдмӧг.'''
 
Нёльсэрӧгын кӧ воча пельӧсъясыс ӧтыдждаӧсь, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.
 
Нёльсэрӧгын кӧ воча пельӧсъясыс ӧтыдждаӧсь, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.
  
 
[[Файл:Parallelogr 1 todm1.jpg|thumb|center|330px|]]
 
[[Файл:Parallelogr 1 todm1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' — нёльсэрӧг, ∠''A'' = ∠''C'', ∠''B'' = ∠''D''. Кыдзи ми тӧдам нин, нёльсэрӧгын став пельӧслӧн суммаыс 360° ыджда. Сідзкӧ, 2∠''A'' + 2∠''B'' = 360°, ∠''A'' + ∠''B'' = 180°. Сідзкӧ ''AD'' да ''BC'' параллель ногаӧсь: [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9F.D0.B0.D1.80.D0.B0.D0.BB.D0.BB.D0.B5.D0.BB.D1.8C.D0.BB.D1.83.D0.BD_.D1.82.D3.A7.D0.B4.D0.BC.D0.B0.D0.BB.D0.B0.D0.BD_.D0.BD.D0.BE.D0.B3 ∠''A'' да ∠''B'' — ӧтарбокса пытшкӧс пельӧсъяс да налӧн суммаыс 180°].
+
'''Подулалӧм.''' Мед ''ABCD'' — нёльсэрӧг, ∠''A'' = ∠''C'', ∠''B'' = ∠''D''. Кыдзи ми тӧдам нин, нёльсэрӧгын став пельӧслӧн суммаыс 360° ыджда. Сідзкӧ, 2∠''A'' + 2∠''B'' = 360°, ∠''A'' + ∠''B'' = 180°. Сыысь петӧ: ''AD'' да ''BC'' параллель ногаӧсь, ӧд [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9F.D0.B0.D1.80.D0.B0.D0.BB.D0.BB.D0.B5.D0.BB.D1.8C.D0.BB.D1.83.D0.BD_.D1.82.D3.A7.D0.B4.D0.BC.D0.B0.D0.BB.D0.B0.D0.BD_.D0.BD.D0.BE.D0.B3 ∠''A'' да ∠''B'' — пытшкӧсса ӧтарбокса пельӧсъяс, а налӧн суммаыс 180°].
  
 
Тадзи жӧ артмӧ: ''AB'' да ''CD'' куйлӧны параллель ногӧн.  
 
Тадзи жӧ артмӧ: ''AB'' да ''CD'' куйлӧны параллель ногӧн.  
  
'''2-ӧд тӧдмалан ног.'''
+
'''2-ӧд тӧдмӧг.'''
Мед нёльпельӧсалӧн диагональясыс вомӧнасьӧны шӧр чутаныс. Сэки тайӧ параллелограмм.
+
Нёльсэрӧглӧн диагональясыс кӧ вомӧнасьӧны шӧр чутаныс, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.
  
 
[[Файл:Parallelogr 2 todm.jpg|thumb|center|330px|]]
 
[[Файл:Parallelogr 2 todm.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' — нёльпельӧса, ''O'' чут — ''AC'' да ''BD'' диагональяслӧн вомӧнасянін, ''AO'' = ''OC'', ''BO'' = ''OD''. ''AOB'' да ''COD'' пельӧсъяс ӧтыдждаӧсь, найӧ вертикаль пельӧсъяс да. Сідзкӧ, ∆''AOB'' = ∆''COD'' медводдза тӧдмалан ног серти. Та вӧсна ∠''OAB'' = ∠''OCD''. Найӧ ӧтар-мӧдар пытшкӧс куйлысь пельӧсъяс. Сідзкӧ ''AB'' ∥ ''CD''. Сідзи жӧ артмӧ: ''AD'' ''BC''.
+
'''Подулалӧм.''' Мед ''ABCD'' — нёльсэрӧг, ''O'' чут — ''AC'' да ''BD'' диагональяслӧн вомӧнасянін, ''AO'' = ''OC'', ''BO'' = ''OD''. ''AOB'' да ''COD'' пельӧсъяс ӧтыдждаӧсь, найӧ вертикаль пельӧсъяс да. Сідзкӧ ∆''AOB'' = ∆''COD'' медводдза тӧдмӧг серти. Та вӧсна ∠''OAB'' = ∠''OCD''. Сідзкӧ ''AB'' ∥ ''CD'', ӧд ∠''OAB'' да ∠''OCD'' — пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс.
  
'''3-ӧд тӧдмалан ног.'''
+
Тадзи жӧ артмӧ: ''AD'' ∥ ''BC''.
Мед нёльпельӧсалӧн кык воча дор ӧтыдждаӧсь да куйлӧны параллель ногӧн. Сэки тайӧ параллелограмм.
+
 
 +
'''3-ӧд тӧдмӧг.'''
 +
Нёльсэрӧглӧн кӧ кык воча дор ӧтыдждаӧсь да куйлӧны параллель ногӧн, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.
  
 
[[Файл:Parallelogr 3 todm.jpg|thumb|center|330px|]]
 
[[Файл:Parallelogr 3 todm.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' — нёльпельӧса, ''O'' чут — ''AC'' да ''BD'' диагональяслӧн вомӧнасянін, ''AB'' = ''CD'', ''AB'' ''CD''.
+
'''Подулалӧм.''' Мед ''ABCD'' — нёльсэрӧг, ''AB'' = ''CD'', ''AB'' ''CD''. Гижтам ''AC'' да ''BD'' диагональяс. Мед ''O'' — налӧн вомӧнасянін.
  
 
[[Файл:Parallelogr 3 todm0.jpg|thumb|center|330px|]]
 
[[Файл:Parallelogr 3 todm0.jpg|thumb|center|330px|]]
  
Сідзкӧ, ∠''BAO'' = ∠''DCO'', ∠''ABO'' = ∠''CDO'' кыдзи ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс. Та вӧсна ∆''AOB'' = ∆''COD'' мӧд тӧдмалан ног серти. Миян артмӧ: ''AO'' = ''OC'', ''BO'' = ''OD''. Сідзкӧ ''ABCD'' – параллелограмм мӧд тӧдмалан ног серти.
+
∠''BAO'' = ∠''DCO'' да ∠''ABO'' = ∠''CDO'', ӧд найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс, а ''AB'' да ''CD'' — параллельяс.
  
'''4-ӧд тӧдмалан ног.'''
+
Миян артмӧ: ''AB'' = ''CD'', ∠''BAO'' = ∠''DCO'', ∠''ABO'' = ∠''CDO''. Сідзкӧ ∆''AOB'' = ∆''COD'' куимсэрӧгъяс ӧткодьлунлӧн мӧд тӧдмӧг серти. Та вӧсна ''AO'' = ''OC'', ''BO'' = ''OD''. Сідзкӧ ''ABCD'' — параллелограмм, воддза теорема серти.
Мед нёльпельӧсалӧн кык воча доръяс ӧта-мӧдыскӧд ӧтыдждаӧсь. Сэки тайӧ параллелограмм.
+
 
 +
'''4-ӧд тӧдмӧг.'''
 +
Нёльсэрӧглӧн кӧ воча доръясыс ӧтыдждаӧсь, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.
  
 
[[Файл:Parallelogr 4 todm.jpg|thumb|center|330px|]]
 
[[Файл:Parallelogr 4 todm.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.'''  Мед ''ABCD'' — нёльпельӧса, кӧні ''AB'' = ''CD'', ''AD'' = ''BC''. Гижтам ''AC'' диагональ.
+
'''Подулалӧм.'''  Мед ''ABCD'' — нёльсэрӧг, кӧні ''AB'' = ''CD'', ''AD'' = ''BC''. Гижтам ''AC'' диагональ.
  
 
[[Файл:Parallelogr 4 todm084.jpg|thumb|center|330px|]]
 
[[Файл:Parallelogr 4 todm084.jpg|thumb|center|330px|]]
  
Сэки ∆''ABC'' = ∆''CDA'' коймӧд тӧдмалан ног серти. Сідзкӧ, ∠''BCA'' = ∠''CAD''.
+
Сэки ∆''ABC'' = ∆''CDA'' коймӧд тӧдмӧг серти. Сідзкӧ, ∠''BCA'' = ∠''CAD''.
  
 
[[Файл:Parallelogr 4 todm1.jpg|thumb|center|330px|]]
 
[[Файл:Parallelogr 4 todm1.jpg|thumb|center|330px|]]
  
Тайӧ ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс. Сідзкӧ ''BC'' ∥ ''AD''. Та вӧсна ''ABCD'' – параллелограмм 3-ӧд тӧдмалан ног серти.
+
Но ∠''BCA'' да ∠''CAD'' — пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс. Сідзкӧ ''BC'' ∥ ''AD''. Та вӧсна ''ABCD'' – параллелограмм, воддза теорема серти.
  
====Параллелограмм торъяланлунъяс====
+
====Параллелограммлӧн аслунъяс====
  
'''1-ӧд торъяланлун.'''
+
'''1-ӧд аслун.'''
 
Параллелограммлӧн воча пельӧсъяс ӧтыдждаӧсь.
 
Параллелограммлӧн воча пельӧсъяс ӧтыдждаӧсь.
  
 
[[Файл:Par tor1.jpg|thumb|center|330px|]]
 
[[Файл:Par tor1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' — параллелограмм. Сэки ∠''A'' + ∠''B'' = 180°, ∠''B'' + ∠''C'' = 180° (найӧ ӧтарбокса пытшкӧс пельӧсъяс да). Сідзкӧ, ∠''A'' = 180° − ∠''B'' = ∠''C''. Сідзи жӧ артмӧ: ∠''B'' = ∠''D''.
+
'''Подулалӧм.''' Мед ''ABCD'' — параллелограмм. Сэки ∠''A'' + ∠''B'' = 180°, ∠''B'' + ∠''C'' = 180° (найӧ пытшкӧсса ӧтарбокса пельӧсъяс да). Сідзкӧ ∠''A'' = 180° − ∠''B'', дай ∠''C'' = 180° − ∠''B''. Та вӧсна ∠''A'' = ∠''C''. Сідзи жӧ артмӧ: ∠''B'' = ∠''D''.
  
'''2-ӧд торъяланлун.'''
+
'''2-ӧд аслун.'''
 
Параллелограммлӧн воча доръяс ӧтыдждаӧсь.
 
Параллелограммлӧн воча доръяс ӧтыдждаӧсь.
  
 
[[Файл:Par tor2.jpg|thumb|center|330px|]]
 
[[Файл:Par tor2.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' —параллелограмм. Гижтам сылысь ''AC'' диагональсӧ. Сэки ∠''BAC'' = ∠''ACD'', ∠''BCA'' = ∠''CAD'', найӧ ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс да. Сідзкӧ ''ABC'' да ''CDA'' куимпельӧсаяс ӧткодьӧсь (мӧд тӧдмалан ног серти). Та вӧсна ''AB'' = ''CD'', ''AD'' = ''BC''.
+
'''Подулалӧм.''' Мед ''ABCD'' — параллелограмм. Гижтам ''AC'' диагональ. Сэки ∠''BAC'' = ∠''ACD'', ∠''BCA'' = ∠''CAD'', найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да. Сідзкӧ ''ABC'' да ''CDA'' куимсэрӧгъяс ӧткодьӧсь (мӧд тӧдмӧг серти). Та вӧсна ''AB'' = ''CD'', ''AD'' = ''BC''.
  
'''3-ӧд торъяланлун.'''
+
'''3-ӧд аслун.'''
 
Параллелограммлӧн диагональяс вомӧнасьӧны асланыс шӧр чутас.
 
Параллелограммлӧн диагональяс вомӧнасьӧны асланыс шӧр чутас.
  
 
[[Файл:Par tor3.jpg|thumb|center|330px|]]
 
[[Файл:Par tor3.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' — параллелограмм, ''O'' — диагональясыслӧн вомӧнасян чут. Сэки ∠''OAD'' = ∠''OCB'', ∠''ODA'' = ∠''OBC'', найӧ ӧтар-мӧдар куйлысь пытшкӧс пельӧсъяс да. Ми тӧдам нин: ''AD'' = ''BC''. Сідзкӧ ''AOD'' да ''COB'' куимпельӧсаяс ӧткодьӧсь (мӧд тӧдмалан ног серти). Та вӧсна ''AO'' = ''OC'', ''BO'' = ''OD''.
+
'''Подулалӧм.''' Мед ''ABCD'' — параллелограмм, ''O'' — диагональясыслӧн вомӧнасян чут. Сэки ∠''OAD'' = ∠''OCB'', ∠''ODA'' = ∠''OBC'', найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да. Воддза теорема серти, ''AD'' = ''BC''. Сідзкӧ ''AOD'' да ''COB'' — ӧткодь куимсэрӧгъяс (мӧд тӧдмӧг серти). Та вӧсна ''AO'' = ''OC'', ''BO'' = ''OD''.
 +
 
 +
===Бурсэрӧг===
 +
 
 +
Параллелограмм, эм кӧ сыын бур пельӧс, шусьӧ бурсэрӧгӧн.
 +
 
 +
'''Теорема.''' Бурсэрӧгын быд пельӧсыс бур.
  
===Веськыдсэрӧг===
+
[[Файл:Bursereg.jpg|thumb|center|330px|]]
  
'''Урчитӧм.''' Параллелограмм, кодлӧн ӧти пельӧсыс веськыд, шусьӧ веськыдсэрӧгӧн.
+
'''Подулалӧм.''' Мед ''ABCD'' — бурсэрӧг, кӧні ∠''A'' = 90°. Быд бурсэрӧг лоӧ параллелограммӧн. Кыдзи ми тӧдам нин, параллелограммын воча пельӧсъяс ӧтыдждаӧсь, а пытшкӧсса ӧтарбокса пельӧсъяслӧн суммаыс лоӧ 180°. Сідзкӧ ∠''A'' + ∠''B'' = 180°, ∠''A'' + ∠''D'' = 180°, ∠''A'' = ∠''C''. Та вӧсна ∠''B'' = ∠''C'' = ∠''D'' = 90°.  
  
'''Пасйӧд.''' Веськыдсэрӧглӧн став пельӧсыс веськыд.
+
'''Теорема.''' Бурсэрӧгын диагональясыс ӧтыдждаӧсь.
  
'''Теорема.''' Веськыдсэрӧглӧн диагональясыс ӧтыдждаӧсь.
+
[[Файл:Bursereg1.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' – индӧм веськыдсэрӧг. Сэки ''BAD'' да ''CDA'' куимсэрӧгъяс ӧткодьӧсь кык катет серти. Сідзкӧ, ''AC'' = ''BD''.
+
'''Подулалӧм.''' Мед ''ABCD'' — бурсэрӧг. Гижтам сылы ''AC'' да ''BD'' диагональяс. Артмӧ кык бурпельӧса куимсэрӧг: ∆''BAD'' да ∆''CDA'', кӧні ∠''BAD'' = ∠''CDA'' = 90°. Налӧн эм ӧтувъя ''AD'' катет. Мӧд кык катетыс тшӧтш ӧткузяӧсь: ''AB'' = ''DC'' (найӧ параллелограммын воча доръяс да). Сідзкӧ ∆''BAD'' = ∆''CDA'' [http://wiki.komikyv.org/index.php/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_%D0%BA%D1%83%D1%80%D1%81#.D0.9A.D1.8B.D0.BA_.D0.BA.D0.B0.D1.82.D0.B5.D1.82_.D1.81.D0.B5.D1.80.D1.82.D0.B8. кык катет серти]. Та вӧсна ''AC'' = ''BD''.
  
'''Теорема.''' Параллелограммлӧн диагональясыс кӧ ӧтыдждаӧсь, тайӧ веськыдсэрӧг.
+
'''Теорема.''' Параллелограммын диагональясыс кӧ ӧтыдждаӧсь, сійӧ бурсэрӧг.
  
'''Эскӧдӧм.''' Мед ''ABCD'' – индӧм параллелограмм, ''AC'' = ''BD''. Сэки ''AB'' = ''CD'', ''BAD'' + ∠''CDA'' = 180°. Сідзкӧ, ''BAD'' да ''CDA'' куимпельӧсаяс ӧткодьӧсь коймӧд тӧдмӧс серти. Та вӧсна ∠''BAD'' = ∠''CDA'' = 90°.
+
[[Файл:Bursereg2.jpg|thumb|center|330px|]]
 +
 
 +
'''Подулалӧм.''' Мед ''ABCD'' параллелограмм, кӧні ''AC'' = ''BD''. Миян артмӧ: ''AB'' = ''CD'', найӧ параллелограммын воча доръясыс да. Сідзкӧ ∆''BAD'' = ∆''CDA'' коймӧд тӧдмӧг серти. Та вӧсна ∠''BAD'' = ∠''CDA''. Но ∠''BAD'' + ∠''CDA'' = 180°, найӧ пытшкӧсса ӧтарбокса пельӧсъяс да. Сідзкӧ ∠''BAD'' = 90°.
  
 
===Ромб===
 
===Ромб===
  
'''Урчитӧм.''' Параллелограмм шусьӧ ромбӧн, сылӧн кӧ став дорыс ӧтыджда.
+
Параллелограмм, сылӧн став дорыс кӧ ӧткузьта, шусьӧ ромбӧн.
 +
 
 +
[[Файл:Romb1.jpg|thumb|center|330px|]]
 +
 
 +
'''Теорема.''' Ромбын диагональыс лоӧ сы пельӧслы биссектрисаӧн.
 +
[[Файл:Romb_bis.jpg|thumb|center|330px|]]
 +
 
 +
'''Подулалӧм.''' Мед ''ABCD'' — ромб. Сэки ''ABC'' — ӧткодь берда куимсэрӧг. Та вӧсна  ∠''BAC'' = ∠''BCA'', найӧ подувбердса пельӧсъясыс да. Та кындзи, ∠''BAC'' = ∠''DCA'', ∠''BCA'' = ∠''DAC'', найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да. Миян артмӧ: ∠''BCA'' = ∠''BAC'' = ∠''DCA'', ∠''BAC'' = ∠''BCA'' = ∠''DAC''. Сідзкӧ ''AC'' — ромбса ∠''A'' да ∠''C'' пельӧсъясыслӧн биссектриса.
 +
 
 +
'''Теорема.''' Ромбын диагональясыс куйлӧны перпендикуляр ногӧн.
  
'''Теорема.''' Ромблӧн диагональ лоӧ сылӧн пельӧсыслӧн биссектриса.
+
[[Файл:Romb_perp.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' – индӧм ромб. Сэки ''ABC'' – ӧткодь берда куимпельӧса. Та вӧсна  ∠''BAC'' = ∠''BCA''. Таысь кындзи, ∠''BAC'' = ''DCA'', ∠''BCA'' = ∠''DAC'' кыдзи пытшкӧсса падвежӧнкуйлысьяс. Сідзкӧ, ∠''BCA'' = ∠''DCA'', ∠''BAC'' = ∠''DAC''.  
+
'''Подулалӧм.''' Мед ''ABCD'' ромб. Воддза теорема серти, ''BD'' диагональ лоӧ ∠''ABC'' пельӧслы биссектрисаӧн. ''AB'' = ''BC'' (ромбын доръясыс ӧткузяӧсь да); сідзкӧ ∆''ABC'' — ӧткодь берда куимсэрӧг, ∠''ABC'' — сылӧн йывса пельӧс. Кыдзи ми тӧдам нин, ӧткодь берда куимсэрӧгын йывса пельӧслӧн биссектриса лоӧ судтаӧн. Сідзкӧ ''BD'' да ''AC'' — перпендикуляръяс.
  
'''Теорема.''' Ромблӧн диагональяс ӧшанвизьлунаӧсь ӧта-мӧдыслы.
+
'''Теорема.''' Параллелограмм, кӧні диагональыс юклӧ пельӧссӧ шӧрипӧв, лоӧ ромбӧн.
  
'''Эскӧдӧм.''' Мед ''ABCD'' – индӧм ромб. Ми тӧдам нин: ''BD'' диагональ лоӧ ∠''ABC'' пельӧслӧн биссектриса. ''AB'' = ''BC'' да, ''BD'' ӧшанвизьлуна ''AC''-лы (ӧткодь берда куимпельӧсалӧн торъяланлун серти).
+
[[Файл:Bis_romb.jpg|thumb|center|330px|]]
  
'''Теорема.''' Параллелограмм, кодлӧн диагональыс юклӧ пельӧссӧ шӧрипӧв, лоӧ ромб.
+
'''Подулалӧм.''' Мед ''ABCD'' — параллелограмм, кӧні BD диагональ юклӧ ∠''ABC'' пельӧссӧ шӧрипӧв. Сідзкӧ ∠''ABD'' = ∠''CBD''. ∠''CBD'' да ∠''ADB'' —  пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс; сідзкӧ ∠''CBD'' = ∠''ADB''. Миян артмӧ: ∠''ABD'' = ∠''ADB''. Сідзкӧ ∆''DBA'' — ӧткодь берда куимсэрӧг, кӧні ''AB'' = ''AD''. Параллелограммын воча доръясыс ӧткузяӧсь да, нёльнан дорыс ӧткодьӧсь: ''CD'' = ''AB'' = ''AD'' = ''BC''. Сідзкӧ ''ABCD'' — ромб.
  
'''Эскӧдӧм.''' Мед ''ABCD'' – индӧм параллелограмм, ∠''ABD'' = ∠''CBD''. Сідзкӧ, ∠''CBD'' = ∠''ADB'' кыдзи пытшкӧсса падвежӧнкуйлысьяс. Та вӧсна ∠''ABD'' = ∠''ADB''. Миян артмӧ: ∆''DBA'' ӧткодь берда, ''AB'' = ''AD''. Сідзкӧ, ''ABCD'' – ромб.
+
'''Теорема.''' Параллелограммын кӧ диагональясыс куйлӧны перпендикуляр ногӧн, сійӧ лоӧ ромбӧн.
  
'''Теорема.''' Параллелограмм, кодлӧн диагональясыс ӧшанвизьлунаӧсь ӧта-мӧдыслы, лоӧ ромб.
+
[[Файл:Perp_romb.jpg|thumb|center|330px|]]
  
'''Эскӧдӧм.''' Мед ''ABCD'' – индӧм параллелограмм, сылӧн диагональясыс вомӧнасьӧны ''O'' чутын. Сэки ''AOB'' да ''BOC'' куимпельӧсаяс ӧткодьӧсь кык катет серти. Та вӧсна ''OA'' = ''OB''.
+
'''Подулалӧм.''' Мед ''ABCD'' параллелограмм, кӧні ''AC'' ⊥ ''BD''. Мед ''O'' — диагональяслӧн вомӧнасянін. Кыдзи ми тӧдам нин, параллелограммлӧн диагональяс вомӧнасьӧны асланыс шӧр чутас. Сідзкӧ ''AO'' = ''OC''. Миян артмӧны ''AOB'' да ''COB'' куимсэрӧгъяс, найӧ бурпельӧсаӧсь да ӧткодьӧсь кык катет серти. Та вӧсна ''AB'' = ''BC''. Параллелограммын воча доръясыс ӧткузяӧсь да, нёльнан дорыс ӧткодьӧсь: ''CD'' = ''AB'' = ''BC'' = ''AD''. Сідзкӧ ''ABCD'' — ромб.
  
 
===Квадрат===
 
===Квадрат===
  
'''Урчитӧм.''' Нёльпельӧса шусьӧ квадратӧн, сылӧн кӧ став дорыс ӧтыджда да став пельӧсыс 90° ыджда.
+
Параллелограмм шусьӧ квадратӧн, сійӧ кӧ ӧттшӧтш лоӧ бурсэрӧгӧн да ромбӧн.
  
'''Кывкӧртӧд.''' Квадратлӧн диагональясыс  
+
Сідзкӧ квадратын:
1) ӧтыдждаӧсь,
+
*став дорыс ӧткузьта;
2) ӧта-мӧдыслы ӧшанвизьлунаӧсь,
+
*став пельӧсыс 90° ыджда;
3) шӧрипӧв юклӧны квадратыслысь пельӧсъяссӧ.
+
[[Файл:Quadrat.jpg|thumb|center|220px|]]
 +
*диагональясыс ӧтыдждаӧсь;
 +
*диагональясыс куйлӧны перпендикуляр ногӧн;
 +
*диагональясыс лоӧны квадратлӧн пельӧсъяслы биссектрисаясӧн.
  
'''Кывкӧртӧд.''' Квадратлӧн диагональ юклӧ сійӧс ӧткодь берда веськыдпельӧса кык куимсэрӧг вылӧ.
+
'''Теорема.''' Квадратын диагональыс юклӧ сійӧс бурпельӧса ӧткодь берда кык куимсэрӧг вылӧ.
  
'''Кывкӧртӧд.''' Квадратлӧн кык диагональ юклӧны сійӧс ӧткодь берда веськыдпельӧса нёль куимсэрӧг вылӧ.
+
[[Файл:Quad1diag.jpg|thumb|center|220px|]]
 +
 
 +
'''Подулалӧм.''' Мед ''AC'' лоӧ ''ABCD'' квадратлы диагональӧн. ''ABCD'' — квадрат, сідзкӧ ''AB'' = ''BC'', ''AD'' = ''DC'', ∠''ABC'' = ∠''ADC'' = 90°. Та вӧсна ∆''ABC'' да ∆''ADC'' — ӧткодь берда бурпельӧса куимсэрӧгъяс.
 +
 
 +
'''Теорема.''' Квадратын кык диагональыс юклӧны сійӧс бурпельӧса ӧткодь берда нёль куимсэрӧг вылӧ.
 +
 
 +
[[Файл:Quad2diag.jpg|thumb|center|220px|]]
 +
 
 +
'''Подулалӧм.''' Кыдзи ми тӧдам нин,
 +
1) квадратын диагональясыс куйлӧны перпендикуляр ногӧн; сідзкӧ артмӧм нёльнан куимсэрӧгыс — бурпельӧса;
 +
2) квадратын диагональясыс ӧтыдждаӧсь да вомӧнасьӧны шӧр чутаныс; сідзкӧ артмӧм нёльнан куимсэрӧгыс — ӧткодь бердаӧсь.
  
 
===Трапеция===
 
===Трапеция===
  
'''Урчитӧм.''' Нёльпельӧса шусьӧ трапецияӧн, сылӧн кӧ воча кык дор ӧтнырвизяӧсь, а мӧд воча кык дор абу ӧтнырвизяӧсь.
+
Нёльсэрӧг, кӧні кык дорыс куйлӧны параллель ногӧн, а мӧд кыкыс абу параллель ногаӧсь, шусьӧ трапецияӧн.
 +
 
 +
Параллель доръяссӧ шуӧны трапеция подувъясӧн. Мӧд кык дорыс лоӧны трапециялы боквыв доръясӧн.
 +
 
 +
[[Файл:Trapecia.jpg|thumb|center|220px|]]
 +
 
 +
Трапеция, кӧні эм бур пельӧс, шусьӧ бурпельӧса трапецияӧн.
 +
 
 +
[[Файл:Burpeljesa tapecia.jpg|thumb|center|220px|]]
 +
 
 +
Трапеция, кӧні боквыв доръясыс ӧткузяӧсь, шусьӧ ӧткодь берда трапецияӧн.
 +
 
 +
[[Файл:Otk berda trap1.jpg|thumb|center|220px|]]
  
Ӧтнырвизя доръясыс шусьӧны трапеция подувъясӧн. Мӧд кык дор шусьӧны трапециялӧн боквыв доръясӧн.
+
'''Теорема.''' Ӧткодь берда трапецияын ӧти подув бердын куйлысь пельӧсъяс ӧтыдждаӧсь.
  
Веськыдпельӧса трапециялӧн ӧти пельӧсыс веськыд.
+
[[Файл:Otk berda tr pel.jpg|thumb|center|220px|]]
  
Ӧткодь берда трапециялӧн боквыв доръясыс ӧтыдждаӧсь.
+
'''Подулалӧм.''' Мед ''ABCD'' — трапеция, ''BC'' да ''AD'' — сылӧн подувъяс, ''AB'' = ''CD''. Гижтам ''CD''‐лы параллель ''BE'', кӧні ''E'' чут куйлӧ ''AD'' вундӧг вылын. Миян артмӧ: ''BCDE'' — параллелограмм. Сідзкӧ ''BE'' = ''CD'' (параллелограммлӧн аслун серти). Но ''AB'' = ''CD''; та вӧсна ''AB'' = ''BE''. Кыдзи ми тӧдам нин, ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ӧтыдждаӧсь. Сідзкӧ ∠''BAE'' = ∠''BEA''. ''BE'' да ''CD'' куйлӧны параллель ногӧн, та вӧсна ∠''CDA'' = ∠''BEA'' (найӧ весьтаса пельӧсъяс да). Миян артмис: ∠''CDA'' = ∠''BAE''. Сідзкӧ ''ABCD'' трапецияын ∠''A'' да ∠''D'' пельӧсъяс ӧтыдждаӧсь.
  
'''Теорема.''' Ӧткодь берда трапециялӧн подувбердса пельӧсъяс ӧтыдждаӧсь.
+
'''Теорема.''' Трапецияын кӧ ӧти подув бердын куйлысь пельӧсъяс ӧтыдждаӧсь, тайӧ трапецияыс ӧткодь берда.
  
'''Эскӧдӧм.''' Мед ''ABCD'' – индӧм трапеция, ''BC'' да ''AD'' – сылӧн подувъяс, ''AB'' = ''CD''. Мед ''BE'' ∥ ''CD'', ''E'' чут куйлӧ ''AD'' вундӧг вылын. Сідзкӧ, ''BCDE'' – параллелограмм да ''BE'' = ''CD'', ∠''CDA'' = ∠''BEA''. Та вӧсна ''AB'' = ''BE'' да ∠''BAE'' = ∠''BEA''. Миян артмис: ∠''CDA'' = ∠''BAD''.
+
[[Файл:Pel otk berda tr.jpg|thumb|center|220px|]]
  
'''Теорема.''' Трапециялӧн кӧ подувбердса ӧтыдждаӧсь, сійӧ ӧткодь берда.
+
'''Подулалӧм.''' Мед ''ABCD'' — трапеция, ''BC'' да ''AD'' — сылӧн подувъяс, ∠''CDA'' = ∠''BAD''.  Гижтам ''CD''‐лы параллель ''BE'', кӧні ''E'' чут куйлӧ ''AD'' вундӧг вылын. Сідзкӧ ''BCDE'' — параллелограмм. Параллелограммлӧн аслун серти, ''BE'' = ''CD''. ∠''CDA'' да ∠''BEA'' ӧтыдждаӧсь, найӧ весьтаса пельӧсъяс да. Та вӧсна ∠''BAE'' = ∠''BEA''. Кыдзи ми тӧдам нин, куимсэрӧгын кӧ эм кык ӧтыджда пельӧс, тайӧ куимсэрӧгыс ӧткодь берда. Сідзкӧ  ''AB'' = ''BE''. Но ''BE'' = ''CD''. Со миян и артмис: ''AB'' = ''CD''.
  
'''Эскӧдӧм.'''  Мед ''ABCD'' – индӧм трапеция, ''BC'' да ''AD'' – сылӧн подувъяс, ∠''CDA'' = ∠''BAD''.  Мед ''BE'' ∥ ''CD'', ''E'' чут куйлӧ ''AD'' вундӧг вылын. Сідзкӧ, ''BCDE'' – параллелограмм  да ''BE'' = ''CD'', ∠''CDA'' = ∠''BEA''. Та вӧсна ∠''BAE'' = ∠''BEA''. Сідзкӧ,  ''AB'' = ''BE'' = ''CD''.
+
Водзӧ лыддьӧй: [[Планиметрия курс − 2]].
  
 
==Содтӧд юӧр==
 
==Содтӧд юӧр==
  
 
[[Category:Математика школаын]]
 
[[Category:Математика школаын]]

Текущая версия на 12:11, 12 кос му 2024

Содержание

Веськыд визь йылысь

тшӧтшкӧс — плоскость
веськыд визь — прямая
чут — точка
мыгӧр — фигура
кывкӧртӧд — следствие
подулалӧм — доказательство
кыв вожалӧм — противоречие

Планиметрияӧн шусьӧ геометриялӧн юкӧн, кӧні велӧдӧны тшӧтшкӧсвывса мыгӧръяс.

Тшӧтшкӧслысь, веськыд визьлысь, чутлысь медшӧр торъяланлунъяссӧ индам аксиомаяс пыр.

Аксиома. Эм кӧ тшӧтшкӧсын веськыд визь, сэк тшӧтшкӧсса чутъяс пӧвстысь кодсюрӧяс лоасны тайӧ визьын, а мукӧдыс сыысь ортсын.

Viz vylyn sajyn.jpg

Аксиома. Кык торъялана чут пыр позьӧ нуӧдны веськыд визь; татшӧм визьыс овлӧ сӧмын ӧти.

Kyk cut pyr.jpg

Кывкӧртӧд. Вомӧнасьӧны кӧ кык торъялана веськыд визь, вомӧнасян чутныс лоӧ сӧмын ӧти.

Подулалӧм. Мед, шуам, веськыд визьясыс вомӧнасьӧны торъялана кык чутын. Сідзкӧ, тайӧ чутъяс пырыс позьӧ гижтыны кык торъялана веськыд визь. А аксиомаыд серти, татшӧм визьыс на пыр вермас мунны сӧмын ӧти. Артмӧ кыв вожалӧм.

Eti vomenasjan cut1.jpg

Вундӧг

вундӧг – отрезок

Аксиома. Ӧти веськыд визьса куим торъялан чут пиысь ӧтиыс лоӧ мӧд кык костас; татшӧм чутыс овлӧ сӧмын ӧти.

Cutjas kostyn.jpg

Кык чут на костса став чутыскӧд ӧтув артмӧдӧны вундӧг. Индӧм кык чутыс шусьӧны вундӧг помъясӧн.

Ab vundeg.jpg

Аксиома. Быд вундӧглӧн эм кузьта – плюса лыд.

Вундӧг помъясын кӧ А да В чутъяс, шуам татшӧм вундӧгсӧ АВ; тадзи жӧ и сылысь кузьтасӧ шуам.

Аксиома. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; B-ыс куйлӧ A да C костас. Сэки AC = AB + BC.

Abc sum.jpg

Кывкӧртӧд. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; B-ыс куйлӧ A да C костас. Сэки AC > AB, AC > BC.

Кывкӧртӧд. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; AC = AB + BC. Сэки B-ыс куйлӧ A да C костас.

Подулалӧм. Миян артмӧ: AC > AB, AC > BC. A чутыс кӧ куйлӧ B да C костас, BC > AC; C чутыс кӧ куйлӧ A да B костас, AB > AC. Сідзкӧ, B-ыс куйлӧ A да C костас.

Тшӧтшкӧсджын

тшӧтшкӧсджын – полуплоскость

Аксиома. Быд веськыд визь юклӧ тшӧтшкӧссӧ кык тшӧтшкӧсджын вылӧ. Кык чут A да B куйлӧны ӧти тшӧтшкӧсджынйын, оз кӧ AB вундӧгыс вомӧнав индӧм веськыд визьсӧ.

Сідзкӧ, AB-ыс кӧ вомӧналӧ тайӧ веськыд визьсӧ, A да B чутъясыс куйлӧны торъя тшӧтшкӧсджынъясын.

Thothkesdzyn.jpg

Аксиома. Сетӧма кӧ l веськыд визь да сы вылын куйлысь O чут, быть сюрасны и сэтшӧм A да B чутъяс, кодъяслы лӧсялӧ татшӧмтор: A, O, B абу ӧтилаынӧсь, A да B куйлӧны l вылын да O чутыс куйлӧ A да B чутъяс костын.

AOB aks.jpg

Визьньӧв

визьньӧв – луч
веськыд визьджын – полупрямая

Мед O чут куйлӧ l веськыд визь вылын. Босьтам l сайын куйлысь M чутсӧ. Нуӧдам O да M чутъяс пыр m веськыд визьсӧ. Сэки m юклӧ тшӧтшкӧссӧ кык тшӧтшкӧсджын вылӧ.

Lmo.jpg

Мед A да B чутъяс куйлӧны l веськыд визь вылын. Аксиома серти, найӧ куйлӧны торъя тшӧтшкӧсджынъясын сэк да сӧмын сэк, кор O чут куйлӧ AB вундӧгын. Сідзкӧ, O чут юклӧ l веськыдсӧ кык юкӧн вылӧ; тайӧ юкӧнъясыс шусьӧны визьньӧвъясӧн либӧ веськыд визьджынъясӧн.

Lmoab.jpg

OA да OB – кык визьньӧв:

Viznjov.jpg

Аксиома. Быд визьньӧвйӧ сы йывсяньыс сетӧм кузьтаӧн позьӧ гижтыны дзик ӧти вундӧг.

Viznev vundeg.jpg

Пельӧс йылысь

пельӧс – угол
пельӧс дор – сторона угла
пельӧс йыв – вершина угла
павтыртӧм пельӧс – развёрнутый угол
ёсь пельӧс – острый угол
веськыд пельӧс – прямой угол
ныж пельӧс – тупой угол
орчча пельӧсъяс – смежные углы
вертикаль пельӧсъяс – вертикальные углы

Ӧти чутысь петысь кык визьньӧв артмӧдӧны пельӧс. Тайӧ визьньӧвъясыс шусьӧны пельӧс доръясӧн, а налӧн ӧтувъя чутыс – пельӧс йылӧн.

Peljes.jpg

Пельӧс доръяс костса визьньӧв

Урчитӧм. Визьньӧв мунӧ пельӧс доръяс костӧд, сылӧн помыс кӧ лӧсялӧ пельӧс йывкӧд да сійӧ кӧ вомӧнасьӧ кутшӧмкӧ вундӧгкӧд, кодлӧн помъясыс куйлӧны пельӧс доръяс вылас.

Vn pel kost.jpg

Висьталӧм. Визьньӧв кӧ мунӧ пельӧс доръяс костӧд, сійӧ вомӧнасьӧ быд вундӧгкӧд, кодлӧн помъясыс куйлӧны пельӧс доръяс вылас.

Подулалӧм. Мед O – кутшӧмкӧ пельӧслӧн йыв, OM – визьньӧв, коді мунӧ пельӧс доръяс костӧд. Урчитӧм серти, OM вомӧнасьӧ кутшӧмкӧ AB вундӧгкӧд, кӧні A да B чутъясыс куйлӧны пельӧс доръяс вылас. Мед CD – мӧд вундӧг, C куйлӧ OA визьньӧв вылын, D куйлӧ OB визьньӧв вылын.

Geom pelkost1.jpg

OM веськыд визь юкӧ тшӧтшкӧссӧ кык тшӧтшкӧсджынйӧ; аксиома серти, A да B чутъяс оз ӧти тшӧтшкӧсджынас куйлыны. A да C чутъяс куйлӧны OA визьньӧв вылын, та вӧсна найӧ куйлӧны ӧти тшӧтшкӧсджынйын, OM веськыд визь серти кӧ. Сідзи жӧ артмӧ: B да D чутъяс куйлӧны ӧти тшӧтшкӧсджынйын, OM веськыд визь серти жӧ. Сідзкӧ, CD вундӧг вомӧнасьӧ OM веськыд визьыскӧд. Пасъям вомӧнасян чутсӧ N шыпасӧн.

Петкӧдлам, мый ОМ веськыд визьвывса N чут куйлӧ ОМ визьньӧв вылын. N кӧ тайӧ визьньӧв вылас эз куйлы, O чут куйліс эськӧ M да N костын. Сэки, босьтам кӧ тшӧтшкӧссӧ кык джынйӧ юкысь пыдди OB веськыд визь, M да N эз эськӧ куйлыны ӧти тшӧтшкӧсджынас. Но CA, CN, AM вундӧгъяс оз вомӧнасьны OB веськыд визьыскӧд. Сідзкӧ, OB веськыд визь серти кӧ, N, C, A, М чутъяс куйлӧны ӧти тшӧтшкӧсджынйын. Артмис кыв вожалӧм.

Пельӧс градуса муртӧс

Урчитӧм. Пельӧслӧн доръясыс кӧ артмӧдӧны веськыд визь, сійӧ шусьӧ павтыртӧм пельӧсӧн.

Аксиомаяс. 
1. Быд пельӧс позьӧ муртавны плюса градусӧн. 
2. Визьньӧв кӧ мунӧ пельӧс доръяс костӧд, сэки тайӧ пельӧсас сымда жӧ градус, мыйта визьньӧвнас артмӧдӧм кыкнан пельӧсас ӧтув босьтӧмӧн.
Pel sum.jpg
3. Павтыртӧм пельӧсыс лоӧ 180° ыджда.
Pavt murt.jpg
4. Быд визьньӧвсянь позьӧ бӧрйӧм тшӧтшкӧсджынйӧ пуктыны сетӧм муртӧсӧн дзик ӧти пельӧс (медтыкӧ 180°-ысь ыджыдджык эз вӧв-а).
Peljes viznevsjan.jpg

Орчча пельӧсъяс

Урчитӧм. Кык пельӧс шусьӧ орччаӧн, налӧн кӧ эм ӧтувъя дор, а мӧд доръяс кӧ артмӧдӧны веськыд визь.
Orcca peljesjas.jpg
Теорема. Ӧтувтам кӧ орчча пельӧсъяслысь ыджданысӧ, лоӧ 180°.
Подулалӧм. Орчча пельӧсъяс артмӧдӧны павтыртӧм пельӧссӧ, кодлӧн ыдждаыс 180°. Сідзкӧ, 2-ӧд аксиома серти, налӧн суммаыс лоас 180°.
Кывкӧртӧд.  Пельӧсыс кӧ 90° ыджда, сыкӧд орчча пельӧсыс сідзжӧ 90° ыджда.

Бур (веськыд), ёсь да ныж пельӧсъяс

Урчитӧм. Пельӧс шусьӧ ёсьӧн, сылӧн градуса муртӧсыс кӧ 90°-ысь этшаджык; бур пельӧсӧн (рочӧн моз веськыд пельӧс), сійӧ кӧ 90° ыджда; ныж пельӧсӧн, сійӧ кӧ 90°-ысь ыджыдджык.
Peljes sikasjas.jpg

Вертикаль пельӧсъяс

Урчитӧм. Кык пельӧс шусьӧ вертикаль пельӧсъясӧн, ӧтиыслӧн доръясыс кӧ лоӧны мӧд пельӧсса доръяслӧн нюжӧдӧмӧн.
Vertikal peljes.jpg
Теорема. Вертикаль пельӧсъяс ӧтыдждаӧсь.
Подулалӧм. Серпас серти, ∠AOB да ∠BOC орччаӧсь, ∠BOC да ∠COD орччаӧсь. Та вӧсна ∠AOB + ∠BOC = 180°, ∠BOC + ∠COD = 180°. Сідзкӧ, ∠AOB = 180° – ∠BOC = ∠COD.
Vertikal aob.jpg

Куимсэрӧгъяс

куимпельӧса, куимсэрӧг — треугольник

Куимпельӧсаӧн либӧ куимсэрӧгӧн шусьӧ куим чутысь (кодъяс оз куйлыны ӧти веськыд визь вылын) да найӧс йитан вундӧгъясысь тэчӧм мыгӧр. Индӧм куим чутсӧ куимсэрӧгын шуам йывъяснас, а вундӧгъяссӧ — доръяснас.

Kuimpelesa dor jyv.jpg

ABC куимсэрӧгын AB да визьньӧвъяс костын куйлысь пельӧс шусьӧ A йывбердса пельӧсӧн.

Ӧткодь куимсэрӧгъяс

ӧткодь куимсэрӧгъяс – равные треугольники

ABC да A’B’C’ куимсэрӧгъяс ӧткодьӧсь, налӧн кӧ ӧта-мӧдыслы лӧсялана пельӧсъяс ӧтыдждаӧсь, а ӧта-мӧдыслы лӧсялана доръясыс ӧткузяӧсь: ∠A = ∠A’, ∠B = ∠B’, ∠C = ∠C’, AB = A’B’, AC = A’C’, BC = B’C’.

Otked kuimp def.jpg

Гижтам визьньӧв. Нюжӧдам кӧ сійӧс, лоӧ веськыд визь, коді юклӧ тшӧтшкӧссӧ кык джынйӧ. Бӧръям тайӧ тшӧтшкӧсджынъяс письыс ӧтиӧс. Сэсся гижтам ABC куимсэрӧг да бӧръям сылысь дорсӧ (шуам, AB вундӧгсӧ), а тайӧ вундӧгыслысь пасъям ӧти помсӧ (шуам, A).

Аксиома. Бӧрйӧм тшӧтшкӧсджынйӧ позьӧ пуктыны ABC-кӧд ӧткодь DEF куимсэрӧг сэтшӧм ногӧн, медым DE вундӧг куйліс индӧм визьньӧвйын да D помыс ӧтлаасис визьньӧвйыслӧн воддза чуткӧд.

Aks otk tsdz1.jpg

Ӧткодь куимсэрӧгъяслӧн медводдза тӧдмӧг

Теорема. Кор ABC да A’B’C’ – куимсэрӧгъяс, AB = A’B’, AC = A’C’, ∠A = ∠A’, сэки ∆ABC = ∆A’B’C’.

1todmes kuimp.jpg

Подулалӧм. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм AMK куимсэрӧг, кӧні: 1) ∆AMK = ∆A’B’C’, 2) AM куйлӧ AB визьньӧвйын, 3) AMK да ABC куйлӧны AB веськыд визь серти ӧти тшӧтшкӧсджынйын.

1todmes proof1.jpg

Кык куимсэрӧгыс (тані ∆AMK да ∆A’B’C’) кӧ ӧткодьӧсь, сэки и налӧн лӧсялана доръясыс да пельӧсъясыс тшӧтш ӧткодьӧсь: AM = A’B’, AK = A’C’, ∠B’A’C’ = ∠MAK. Сідзкӧ:

1) AB = A’B’ = AM, сійӧн и M = B;

1todmes proof2.jpg

2) ∠BAC = ∠B’A’C’ = ∠BAK, та вӧсна AK да AC визьньӧвъяс тшӧтш лӧсялӧны;

1todmes proof3.jpg


3) AC = A’C’ = AK, сійӧн и K = C.

1todmes proof4.jpg

Кык чут пыр вермӧ мунны сӧмын ӧти веськыд визь. Сідзкӧ, AMK да ABC куимсэрӧгъяс ӧта-мӧдкӧд лӧсялӧны. Та вӧсна ∆ABC = ∆A’B’C’.

Ӧткодь берда да ӧткодь доръяса куимсэрӧгъяс

ӧткодь берда куимсэрӧг – равнобедренный треугольник
ӧткодь доръяса куимсэрӧг – равносторонний треугольник
боквыв доръяс – боковые стороны
подув – основание
  • Куимсэрӧгын кӧ кык дорыс ӧтыдждаӧсь, шуам сійӧс ӧткодь берда куимсэрӧгӧн.
  • Куимсэрӧгын кӧ куимнан дорыс ӧтыдждаӧсь, шуам сійӧс ӧткодь доръяса куимсэрӧгӧн.

Пасйӧд. Ӧткодь берда куимсэрӧгын коймӧд дорыс вермӧ торъявны кык ӧткодь дорсьыс, а вермӧ лоны и на кузьта жӧ. Сэки татшӧм ӧткодь берда куимсэрӧгыс лоӧ тшӧтш ӧткодь доръясаӧн. Сідзкӧ, ӧткодь доръяса куимсэрӧг лоӧ тшӧтш ӧткодь бердаӧн, сылӧн быд кык дорыс ӧтыдждаӧсь да.

Otkod berda.jpg
  • Ӧткодь берда куимсэрӧгын ӧткодь доръяссӧ шуам боквыв доръясӧн, а коймӧд дорсӧ — подулӧн.
  • Подувлы паныд куйлысь пельӧссӧ шуам йывса пельӧсӧн, а боквыв дорлы паныд куйлысь пельӧссӧ — подувбердса пельӧсӧн.
Poduv berdsa peles.jpg

Теорема. Ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ӧтыдждаӧсь.

Dor peles otked.jpg

Подулалӧм. Мед ABC – ӧткодь берда куимсэрӧг, AB = BC. Лыддям куимсэрӧгыслысь йывъяссӧ ӧтарлань да мӧдарлань: ABC да CBA. Пуктам ∆ABC да ∆CBA орччӧн. Казялам: AB = BC, CB = BA, а на костса B пельӧс ӧтувъя. Сідзкӧ, ӧткодьлунсӧ медводдза тӧдмӧг серти, ∆ABC = ∆CBA. А та вӧсна и ∠BAC = ∠BCA.

☼ ☼ ☼

Ӧткодь доръяса куимсэрӧглысь куимнан дорсӧ позьӧ шуны кӧть подулӧн, кӧть боквыв дорӧн, а куимнан пельӧссӧ — кӧть подувбердса, кӧть йывса пельӧсӧн.

Теорема. Ӧткодь доръяса куимсэрӧгын куимнан пельӧсыс ӧтыджда.

Otked dor dor peles.jpg

Подулалӧм. Мед ABC – ӧткодь доръяса куимсэрӧг. Лыддям кӧ AC дорсӧ подулӧн, сэки ∠BAC = ∠BCA, найӧ подувбердса пельӧсъяс да; BC дорсӧ сідзжӧ позьӧ лыддьыны подулӧн, сэки подувбердса пельӧсъясӧн лоӧны ∠ACB да ∠ABC, сідзкӧ найӧ тшӧтш ӧткодьӧсь. Та дырйи ∠BCA да ∠ACB — ӧти сійӧ жӧ пельӧс (видзӧд серпассӧ). Кык ӧткодьлунсьыс (∠BAC = ∠BCA да ∠BCA = ∠ABC) артмӧ: ∠BAC = ∠BCA = ∠ABC.

Ӧткодь куимсэрӧгъяслӧн мӧд тӧдмӧг

Теорема. Кор ABC да A’B’C’ – куимсэрӧгъяс, AB = A’B’, ∠A = ∠A’, ∠B = ∠B’, сэки ∆ABC = ∆A’B’C’.

Kuimp 2 todmes.jpg

Подулалӧм. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм AMK куимсэрӧг, кӧні: 1) ∆AMK = ∆A’B’C’, 2) AM куйлӧ AB визьньӧвйын, 3) AMK да ABC куйлӧны AB веськыд визь серти ӧти тшӧтшкӧсджынйын.

Kuimp 2 todm 1.jpg

Кык куимсэрӧгыс (тані ∆AMK да ∆A’B’C’) кӧ ӧткодьӧсь, сэки и налӧн лӧсялана доръясыс да пельӧсъясыс тшӧтш ӧткодьӧсь: AM = A’B’, ∠B’A’C’ = ∠MAK, ∠A’B’C’ = ∠AMK. Сідзкӧ:

1) AB = A’B’ = AM, сійӧн и M = B;

Kuimp 2 todm 2.jpg

2) ∠BAC = ∠B’A’C’ = ∠BAK, та вӧсна AK да AC визьньӧвъяс тшӧтш лӧсялӧны;

Kuimp 2 todm 3.jpg

3) ∠ABC = ∠A’B’C’ = ∠ABK, та вӧсна BK да BC визьньӧвъяс лӧсялӧны жӧ.

Kuimp 2 todm 4.jpg

Кык торъялана веськыд визь вермӧ вомӧнасьны сӧмын ӧти чутын. Сідзкӧ, миян K да C ӧти и сійӧ жӧ чут. Вылынджык аддзим: M да B тшӧтш ӧти чут. Со и петӧ, мый AMK да ABC куимсэрӧгъяс лӧсялӧны. А казьтыштам кӧ, мый ∆AMK да ∆A’B’C’ ӧткодьӧсь, сэки и воам кывкӧртӧдӧ: ∆ABC = ∆A’B’C’.

☼ ☼ ☼

Теорема. Куимсэрӧгыс лоӧ ӧткодь бердаӧн, сыын кӧ эм кык ӧтыджда пельӧс.

Otk pel otk dor.jpg

Подулалӧм. Мед ABC – куимсэрӧг, ∠A = ∠C. Лыддям куимсэрӧгыслысь йывъяссӧ ӧтарлань да мӧдарлань: ABC да CBA. Пуктам ∆ABC да ∆CBA орччӧн. Казялам: ∠A = ∠C, ∠C = ∠A, а на костса AC дорыс ӧтувъя. Сідзкӧ, ӧткодьлунсӧ мӧд тӧдмӧг серти, ∆ABC = ∆CBA. А та вӧсна и AB = BC.

☼ ☼ ☼

Кывкӧртӧд 1. Куимсэрӧгын кӧ эм кык ӧтыджда пельӧс, татшӧм куимсэрӧгыс быть лоӧ ӧткодь бердаӧн; и мӧдарӧ, куимсэрӧгыс кӧ ӧткодь берда, сыын быть эм кык ӧтыджда пельӧс. (Дженьдӧдӧм могысь шуӧны тадзи: куимсэрӧг ӧткодь берда сэк да сӧмын сэк, кор сыын эм кык ӧтыджда пельӧс.)

Кывкӧртӧд 2. Куимсэрӧгын кӧ куимнан пельӧсыс ӧтыдждаӧсь, татшӧм куимсэрӧгыс быть лоӧ ӧткодь доръясаӧн; и мӧдарӧ, куимсэрӧгыс кӧ ӧткодь доръяса, сылӧн куимнан пельӧсыс ӧтыдждаӧсь. (Дженьдӧдӧм могысь шуӧны тадзи: куимсэрӧг ӧткодь доръяса сэк да сӧмын сэк, кор сыын куимнан пельӧсыс ӧтыдждаӧсь.)

3peljes 3dor.jpg

Биссектриса, медиана да судта

  • Биссектрисаӧн шуӧны визьньӧв, коді петӧ пельӧс йылысь да юклӧ тайӧ пельӧссӧ шӧрипӧв.
Bissektr def.jpg
  • Куимсэрӧгын биссектрисаӧн шуӧны вундӧг, коді юклӧ сылысь ӧти пельӧссӧ шӧрипӧв да йитӧ тайӧ пельӧс йывсӧ паныда дор вылын куйлысь чуткӧд.
Kuimp bis def.jpg
  • Куимсэрӧгын медианаӧн шуӧны вундӧг, коді йитӧ сылысь ӧти йывсӧ паныда дорвывса шӧр чуткӧд.
Kuimp mediana def.jpg

Теорема. Кык веськыд визь кӧ вомӧнасьӧны да та дырйи артмӧм нёль пельӧсысь ӧтиыс кӧ лоӧ бур, сэки мукӧд куим пельӧсыс тшӧтш бурӧсь.

Подулалӧм. Тайӧ куим пельӧс пӧвстысь ӧтиыс куйлӧ 90°‐а пельӧскӧд вертикаль ногӧн, та вӧсна сійӧ лоӧ тшӧтш бур (вертикаль пельӧсъяс ӧткодьӧсь да). Мӧд кыкыс 90°‐а пельӧскӧд орччаӧсь, та вӧсна и найӧ бурӧсь (кыдзи ми тӧдам нин).

Perpend 4.jpg
  • Веськыд визь шусьӧ перпендикулярӧн мӧд веськыд визьлы, найӧ кӧ артмӧдӧны бур пельӧс.
  • Куимсэрӧгын судтаӧн шуӧны вундӧг, коді йитӧ сылысь ӧти йывсӧ паныда дор визь вылын куйлысь чуткӧд да лоӧ тайӧ дорыслы перпендикулярӧн.
Sudta kuimp.jpg

Теорема. Ӧткодь берда куимсэрӧгын йывса пельӧсса биссектрисаыс лоӧ ӧттшӧтш медианаӧн да судтанас.

Otk berda bis med sudta.jpg

Подулалӧм. Мед ABC – куимсэрӧг, кӧні AB = BC, а BD – биссектрисаыс, коді юклӧ ABC-сӧ кык пельӧ: ∆ABD да ∆CBD. Казялам: AB = CB, ∠ABD = ∠CBD, а BD – налӧн ӧтувъя дор. Ӧткодьлунсӧ медводдза тӧдмӧг серти, ∆ABD = ∆CBD. Таысь петӧ кык тор:

  1. AD = DC, а сідзкӧ, BD — медиана;
  2. BDA = ∠BDC; серпасысь позьӧ аддзыны, мый тайӧ ӧткодь пельӧсъясыс орччаӧсь. Кыдзи ми тӧдам, орчча пельӧсъяслӧн суммаыс 180°, та вӧсна ∠BDA = 90° да ∠BDC = 90°, а сідзкӧ, BD — судта.

Ӧткодь куимсэрӧгъяслӧн коймӧд тӧдмӧг

Теорема. Кор ABC да A’B’C’ – куимсэрӧгъяс, кӧні AB = A’B’, BC = B’C’, AC = A’C’, сэки ∆ABC = ∆A’B’C’.

Kuimp otk 3 todm.jpg

Подулалӧм. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм AMK куимсэрӧг, кӧні: 1) ∆AMK = ∆A’B’C’; 2) AM куйлӧ AB визьньӧвйын; 3) K да C чутъяс куйлӧны торъя тшӧтшкӧсджынъясын AB веськыд визь серти.

(колӧ серпас)

AB = A’B’ = AM, та вӧсна M = B.

Kuimp otk 3 todmes1.jpg

AC = A’C’ = AK; сідзкӧ, AC да AK – боквыв доръяс ӧткодь берда CAK куимсэрӧгын. Та вӧсна ∠AKC = ∠ACK. Сэтшӧм жӧ ногӧн артмӧдам: ∠BKC = ∠BCK.

Kuimp otk 3 todmes2.jpg

Сідзкӧ, ∠ACB = ∠ACK + ∠BCK = ∠AKC + ∠BKC = ∠AKB. Таысь кындзи, AC = AK, BC = BK. Сы вӧсна ABC да ABK куимсэрӧгъяс ӧткодьӧсь медводдза тӧдмӧг серти да ∆A’B’C’ = ∆ABK = ∆ABC.

Веськыд визьлань ортсы чут пыр гижтӧм перпендикуляр

Теорема. Веськыд визьысь ортсыын куйлысь чут пыр оз позь гижтыны сы дорӧ кык торъялана перпендикуляр.

Подулалӧм (паныдсянь). Мед A чут лоӧ l веськыд визьысь ортсыын, а AM да AN – тайӧ визь дорас кык торъялана перпендикуляр, кодъяс вомӧналӧны l-сӧ M да N чутъясын. Та дырйи M да N – кык торъялана чут.

Kyk perpend.jpg

Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм MBN куимсэрӧг, кӧні: 1) ∆MBN = ∆MAN, 2) A да B чутъяс куйлӧны l веськыд визь серти торъя тшӧтшкӧсджынъясын.

Kyk perpend 1.jpg

Миян артмӧ: ∠AMN = ∠BMN = 90°; та вӧсна ∠AMB = 180° да M чут куйлӧ AB веськыд визь вылын. Сэтшӧм жӧ ногӧн артмӧдам: N чут куйлӧ AB веськыд визь вылын. AB да l веськыдъяс вомӧнасьӧны сӧмын ӧти чутын. Сідзкӧ, M = N, а тайӧ оз лӧсяв миян воддза шуӧмкӧд, код серти M да N – кык торъялана чут.

Теорема. Ӧткодь берда куимсэрӧгын йывса пельӧсса судта лоӧ ӧттшӧтш биссектрисаӧн да медианаӧн.

Otk berda sudta bis med.jpg

Подулалӧм (паныдсянь). Мед судтаыс оз ло биссектрисаӧн. Гижтам йывса пельӧслысь биссектрисасӧ. Кыдзи ми тӧдам нин, ӧткодь берда куимсэрӧгын йывса пельӧслӧн биссектрисаыс ӧттшӧтш лоӧ сылы судтаӧн. Сідзкӧ, йывса пельӧсысь позьӧ гижтыны подувлы кык торъялана перпендикуляр, а тайӧ оз лӧсяв воддза теоремакӧд.

Теорема. Веськыд визь дорӧ сыысь ортсыын куйлысь чут пырыс позьӧ гижтыны перпендикуляр.

Perp exist0.jpg

Подулалӧм. Мед A чут куйлӧ l веськыд визьысь ортсыын, B да C чутъяс лоӧны l вылын. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм BA’C куимсэрӧг, кӧні: 1) ∆BA’C = ∆BAC, 2) A да A’ чутъяс куйлӧны l веськыд визь серти торъя тшӧтшкӧсджынъясын. Сідзкӧ, ABA’ куимсэрӧгын AB = A’B, BC визьньӧв – ∠ABA’-лӧн биссектриса. Кыдзи ми тӧдам нин, ӧткодь берда куимсэрӧгын йывса пельӧслӧн биссектрисаыс ӧттшӧтш лоӧ сылы судтаӧн. Сідзкӧ, AA’ лоӧ l-лы перпендикулярӧн.

Ортсыса пельӧс

Куимсэрӧглысь став видлалӧм сикас пельӧсъяссӧ позьӧ шуны тшӧтш пытшкӧс пельӧсъясӧн. Куимсэрӧг бердын куимнан пытшкӧс пельӧскӧд орччӧн куйлӧны ортсы пельӧсъяс. Мӧд ногӧн шуны, куимсэрӧглӧн ортсы пельӧсӧн шусьӧ быд пытшкӧс пельӧскӧд орчча пельӧс.

Ortsysa peljes.jpg

Теорема. Ортсыса пельӧс ыджыдджык куимсэрӧгса кыкнан пельӧсысь, коді сыкӧд абу орччӧн.

Подулалӧм. Мед ABC — куимсэрӧг, ∠BCD — сылӧн ортсы пельӧс, коді куйлӧ ∠BCA-кӧд орччӧн; та дырйи C чут куйлӧ A да D костын. Петкӧдлам: ∠ABC < ∠BCD.

Ortsysa pel ydzyddzyk0.jpg

Та могысь гижтам ∠BCD пельӧс доръяс костӧд сэтшӧм CE визьньӧв, медым ∠ABC = ∠BCE. Кытысь лоӧ E чутыс? BC вундӧг шӧрын куйлысь чут пыр (пасъям сійӧс O) гижтам AO визьньӧв. Тайӧ визьньӧв вылас пасъям E чут, коді куйлӧ O чутсянь сы ылнаын жӧ, кыдзи и A чут. Миян артмӧ: 1) OC = OB; 2) AO = OE; 3) ∠AOB = ∠EOC кыдзи вертикаль пельӧсъяс. Сідзкӧ ∆AOB = ∆EOC медводдза тӧдмӧг серти. Та вӧсна ∠ABC = ∠BCE, кыдзи ӧткодь куимсэрӧгъясын лӧсялана пельӧсъяс.

O, B да E чутъяс куйлӧны ӧти тшӧтшкӧсджынйын AD веськыд визь серти. Миян артмӧ: 1) ∠BCD = 180° – ∠BCA (кыдз орчча); 2) ВС да AE вундӧгъяс вомӧнасьӧны, мӧд ног шуны, CB визьньӧв мунӧ ∠ACE пельӧс доръяс костӧд. Сідзкӧ ∠ACE = ∠BCE + ∠BCA. 3) ∠ACE < 180°, та вӧсна ∠ACE-ысь кӧ чинтам ∠BCA да 180°-ысь сійӧ жӧ ∠BCA чинтам, медводдза чинтасыс лоас этшаджык мӧд чинтассьыс (формулаӧн кӧ пасъям, ∠ACE – ∠BCA < 180° – ∠BCA).

Ӧтувтам кӧ став артмӧм формула, лоас:

ABC = ∠BCE;

BCE = ∠ACE – ∠BCA;

ACE – ∠BCA < 180° – ∠BCA;

180° – ∠BCA = ∠BCD.

Сідзкӧ ∠ABC < ∠BCD.

Сэтшӧм жӧ ногӧн артмӧдам, мый ∠BAC < ∠BCD.

Куимсэрӧглысь доръяс да пельӧсъяс ӧтластитӧм

Теорема. Куимсэрӧгын ыджыдджык дорлы паныд куйлӧ ыджыдджык пельӧс.

Dor peljes otlastitem1.jpg

Подулалӧм. Мед ABC куимсэрӧгын AC > AB. Петкӧдлам: ∠ABC > ∠ACB. Пасъям AC вундӧг вылын сэтшӧм D чут, медым AD = AB. Сідзкӧ, ∠ABD = ∠BDA, ӧд найӧ ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс.

BD вундӧг юкӧ ∆ABC-сӧ кык пельӧ; сы пытшкын ӧні эм кык куимсэрӧг: ∆ABD да ∆BCD. ∠BDA лоӧ ∆BCD куимсэрӧглы ортсыса пельӧс. Кыдзи ми тӧдам нин, ортсыса пельӧс век ыджыдджык пытшкӧсса пельӧсысь, коді сыкӧд абу орчча. Сідзкӧ ∠BDA > ∠BCD. Ӧтувтам кӧ став артмӧм формула, лоас:

ABC > ∠ABD,

ABD = ∠BDA,

BDA > ∠BCD,

BCD = ∠ACB.

Сідзкӧ, ∠ABC > ∠ACB.

Теорема. Куимсэрӧгын ыджыдджык пельӧслы паныд куйлӧ ыджыдджык дор.

(татчӧ колӧ серпас)

Подулалӧм. Мед ABC куимсэрӧгын ∠ABC > ∠ACB. Петкӧдлам: AC > AB.

Тайӧ кӧ абу сідз, либӧ AC = AB, либӧ AC < AB. Кыдзи ми тӧдам нин, кор AC = AB, сэки ∠ABC = ∠ACB; кор AC < AB, сэки ∠ABC < ∠ACB. Тайӧ оз лӧсяв ∠ABC > ∠ACB ӧткодьтӧмлункӧд.

☼ ☼ ☼

Сідзкӧ, куимсэрӧгын ӧти дор кузьджык мӧд дорсьыс сэк да сӧмын сэк, кор медводдза дорыслы паныд куйлан пельӧс ыджыдджык мӧд дорыслы паныд куйлан пельӧсысь.

Ёсьпельӧса, бурпельӧса да ныжпельӧса куимсэрӧгъяс

ёсьпельӧса куимсэрӧг — остроугольный треугольник
бурпельӧса куимсэрӧг — прямоугольный треугольник
ныжпельӧса куимсэрӧг — тупоугольный треугольник

Куимсэрӧг шусьӧ ёсьпельӧсаӧн, сыын кӧ куимнан пельӧсыс ёсь.

Куимсэрӧг шусьӧ бурпельӧсаӧн, сыын кӧ ӧти пельӧсыс бур (веськыд).

Куимсэрӧг шусьӧ ныжпельӧсаӧн, сыын кӧ ӧти пельӧсыс ныж.


Теорема. 1) Бурпельӧса куимсэрӧгын гипотенузабердса пельӧсъяс ёсьӧсь. 2) Гипотенуза кузьджык катетысь.

Veskydpeljesa kuimsereg otk.jpg

Подулалӧм. 1) Бур пельӧскӧд орчча пельӧс тшӧтш бур; теорема серти, сійӧ ыджыдджык гипотенузабердса пельӧсысь. 2) Бур (веськыд) пельӧсыс куимсэрӧгын медыджыд, та вӧсна сылы паныд куйлысь дор медкузь.

Висьталӧм. Ныжпельӧса куимсэрӧгын эм кык ёсь пельӧс.

Tsotsyd 2 jos.jpg

Подулалӧм. Ӧти пельӧсыс кӧ ныж, сыкӧд орчча пельӧсыс ёсь. Кыдз ми тӧдам нин, ортсыса пельӧс ыджыдджык пытшкӧсса пельӧсысь, коді абу сыкӧд орччӧн. Сідзкӧ куимсэрӧгыслӧн мукӧд пытшкӧсса пельӧсъяс ёсь пельӧсысь ичӧтджыкӧсь; та вӧсна найӧ асьныс ёсьӧсь.

Висьталӧм. Ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ёсьӧсь.

Otk berda 2 jos.jpg

Подулалӧм. Кыдз ми тӧдам нин, 1) ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ӧтыдждаӧсь, 2) бурпельӧса либӧ ныжпельӧса куимсэрӧгын эм кык ёсь пельӧс. Сідзкӧ, подувбердса пельӧс оз вермы лоны бурӧн ни ныжӧн.

Бурпельӧса ӧткодь куимсэрӧгъяслӧн тӧдмӧг

Кык катет серти.

Теорема. Кор ABC да A’B’C’ — бурпельӧса куимсэрӧгъяс, кӧні AB, BC, A’B’, B’C’ — катетъяс, AB = A’B’, BC = B’C’, сэки ∆ABC = ∆A’B’C’.

2katet.jpg

Подулалӧм.ABC = ∠A’B’C’ = 90°, AB = A’B’, BC = B’C’; сідзкӧ, куимсэрӧгъясыс ӧткодьӧсь медводдза тӧдмӧг серти.

Катет да гипотенуза серти.

Теорема. Кор ABC да A’B’C’ — бурпельӧса куимсэрӧгъяс, кӧні AB да A’B’ — катетъяс, AC да A’C’ — гипотенузаяс, AB = A’B’, AC = A’C’, сэки ∆ABC = ∆A’B’C’.

Kat gip1.jpg

Подулалӧм. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм KBM куимсэрӧг, кӧні: 1) ∆KBM = ∆A’B’C’, 2) M чут куйлӧ куйлӧ BC визь вылын, B чут куйлӧ C да M чутъяс костын, 3) ∆KBM да ∆ABC куйлӧны BC веськыд визь серти ӧти тшӧтшкӧсджынйын.

Медводдза серпас вылас ылӧсас индӧма, кутшӧм тшӧтшкӧсджынйын куйлӧ K чут. Сэсся ми сьӧрсьӧн-бӧрсьӧн кутам стӧчмӧдны сылысь инсӧ.

Kat gip2 0.jpg

Но кыдзи ми тӧдам, ∆KBM = ∆A’B’C’. Таысь петӧ некымынтор:

1) ∠KBM = ∠A’B’C’ = 90°, ∠ABM = 180° − ∠ABC = 90°; сійӧн K чутлы быть куйлыны BA визьньӧв вылын.

Kat gip3.jpg

2) AB = A’B’, A’B’ = KB; та вӧсна AB = KB да K чутлы быть лӧсявны A-кӧд.

(серпас)

3) AC = A’C’, A’C’ = KM = AM; сійӧн AC = AM.

Kat gip4 0.jpg

Миян артмӧ ∆CAM. Сійӧ — ӧткодь берда куимсэрӧг, кӧні AC да AM — боквыв доръяс, AB — судта. Кыдзи ми тӧдам нин, подувлань гижтӧм судта лоӧ биссектрисаӧн. Миян артмӧ: AC = AM, ∠CAB = ∠MAB. Сідзкӧ, ∆ABC = ∆ABM медводдза тӧдмӧг серти. Но ∆ABM = ∆KBM = ∆A’B’C’. Сійӧн ∆ABC = ∆A’B’C’.

Катет да сы бердса ёсь пельӧс серти.

Теорема. Кор ABC да A’B’C’ — бурпельӧса куимсэрӧгъяс, кӧні AB да A’B’ — катетъяс, ∠A да ∠A’ — ёсь пельӧсъяс, AB = A’B’, ∠A = ∠A’, сэки ∆ABC = ∆A’B’C’.

Kat jos berd0.jpg

Подулалӧм.B = ∠B’ = 90°, AB = A’B’, ∠A = ∠A’; сідзкӧ, куимсэрӧгъясыс ӧткодьӧсь мӧд тӧдмӧг серти.

Катет да сылы паныд куйлысь ёсь пельӧс серти.

Теорема. Кор ABC да A’B’C’ — бурпельӧса куимсэрӧгъяс, кӧні AB да A’B’ — катетъяс, AB = A’B’, ∠B = ∠B’ = 90°, ∠C = ∠C’, сэки ∆ABC = ∆A’B’C’.

Kat jos pan1.jpg

Подулалӧм. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм KBM куимсэрӧг, кӧні: 1) ∆KBM = ∆A’B’C’, 2) M чут куйлӧ куйлӧ BC визь вылын, B чут куйлӧ C да M чутъяс костын, 3) ∆KBM да ∆ABC куйлӧны BC веськыд визь серти ӧти тшӧтшкӧсджынйын.

Татшӧм KBM куимсэрӧгсӧ миян лӧсьӧдлім мӧд теоремасӧ подулалігӧн. Сэки миян артмис: K = A.

Сідзкӧ ∆ABM = ∆A’B’C’. Та вӧсна ∠AMB = ∠A’C’B’. Но ∠A’C’B’ = ∠ACB. Сійӧн ∠AMB = ∠ACB.

Kat jos pan3.jpg

Кыдзи ми тӧдам нин, куимсэрӧгын кӧ эм кык ӧткодь пельӧс, тайӧ куимсэрӧгыс ӧткодь берда. Сідзкӧ ACM — ӧткодь берда куимсэрӧг, CM — сылӧн подулыс, AB — сылӧн судтаыс. Татшӧмтор миян бара жӧ артмыліс нин мӧд теоремасӧ подулалігӧн; сыысь ми тӧдан нин, мый ∆ABC = ∆ABM = ∆A’B’C’.

Гипотенуза да ёсь пельӧс серти.

Теорема. Кор ABC да A’B’C’ — бурпельӧса куимсэрӧгъяс, кӧні AC да A’C’ — гипотенузаяс, AC = A’C’, ∠A = ∠A’, сэки ∆ABC = ∆A’B’C’.

Gip jos.jpg

Подулалӧм. Аксиомаысь петӧ: позьӧ гижтыны сэтшӧм AKM куимсэрӧг, кӧні: 1) ∆AKM = ∆A’B’C’, 2) AK куйлӧ AB визьньӧвйын, 3) ∆AKM да ∆ABC куйлӧны AB веськыд визь серти торъя тшӧтшкӧсджынъясын.

Медводдза серпас вылас ылӧсас индӧма, кутшӧм визьньӧв вылын куйлӧ K чут да кутшӧм тшӧтшкӧсджынйын куйлӧ M чут. Сэсся ми сьӧрсьӧн-бӧрсьӧн кутам стӧчмӧдны налысь инсӧ.

Gip jos1.jpg

Пуктам N чут CB визьньӧв вылӧ тадзи, медым BC = BN. Сэки ∆ABC = ∆ABN кык катет серти.

Gip jos2.jpg

Миян артмӧ:

1) ∠BAN = ∠BAC;

2) ∠BAC = ∠B’A’C’;

3) ∠B’A’C’ = ∠KAM = ∠BAM.

Сідзкӧ ∠BAN = ∠BAM; та вӧсна N чут куйлӧ AM визьньӧв вылын. Пасъям тайӧс выль серпас вылын, сэсся водзӧ кутам стӧчмӧдны K‐лысь да M‐лысь инсӧ.

Gip jos3.jpg

ABC = ∆ABN, та вӧсна AC = AN; но AC = A’C’ да A’C’ = AM. Сідзкӧ AM = AN, кытысь M = N. Вӧчам выль серпас, кӧні M = N; колис сӧмын стӧчмӧдны K чутлысь инсӧ.

Gip jos4.jpg

AKM = ∠A’B’C’ = 90°, ∠ABM = ∠ABC = 90°. Сійӧн MB да MK лоӧны AB‐лы перпендикуляръясӧн. Кыдзи ми тӧдам нин, ӧти чутысь позьӧ гижтыны сӧмын ӧти перпендикуляр. Сідзкӧ, K = B.

Gip jos5.jpg

Миян артмӧ:

1) ∆ABC = ∆ABM;

2) ∆ABM = ∆A’B’C’.

Та вӧсна ∆ABC = ∆A’B’C’.

Куимсэрӧг ӧткодьтӧмлун

Теорема. Куимсэрӧгын кык дорыслӧн ӧтувъя кузьта век лоӧ ыджыдджык коймӧд дор кузьтасьыс.

Kuimp otkedtemlun.jpg

Подулалӧм. Шуам, ABC куимсэрӧгын AC дор лоӧ медкузьӧн. Сідзкӧ AC вундӧгас позьӧ пуктыны D чут, медым AB = AD. Миян артмӧ: ∆DAB — ӧткодь берда куимсэрӧг, DB — сылӧн подулыс, ∠ADB да ∠ABD — сылӧн подувбердса пельӧсъяс.

Dor peljes otlastitem1.jpg

Кыдзи ми тӧдам нин, подувбердса пельӧсыд век лоӧ ёсь. Сідзкӧ, ∠ADB тшӧтш ёсь. Ёсь пельӧскӧд орчча пельӧс век лоӧ ныж. Сійӧн ∠BDC — ныж пельӧс. Миян артмӧ: BDC куимсэрӧгын ∠BDC медыджыд. Кыдзи ми тӧдам нин, медыджыд пельӧслы паныд куйлӧ медкузь дор. Сы понда BC > DC.

Миян артмӧ:

  • AC = AD + DC;
  • AD = AB (сійӧн вылысджык формула позьӧ гижны: AC = AB + DC);
  • DC < BC.

Сідзкӧ, AC < AB + BC.

Параллель (ӧтнырвизя) веськыд визьяс

Кык веськыд визь шусьӧны параллельясӧн, найӧ кӧ оз вомӧнасьны.

Parallel veskyd.jpg

Кор a да b веськыд визьяс куйлӧны параллель ногӧн, гижӧны ab.

Теорема. Кык торъялана веськыд визь кӧ лоӧны перпендикуляръясӧн коймӧд веськыд визьлы, найӧ параллель ногаӧсь.

Parallal veskyd perp.jpg

Подулалӧм (паныдсянь). Тайӧ кык веськыд визь кӧ вомӧнасисны, найӧ вомӧнасянінысь позис эськӧ гижтыны коймӧд веськыд визьлань кык торъялана перпендикуляр. Но, кыдзи ми тӧдам нин, тайӧс вӧчны он вермы.

(татчӧ колӧ серпас)

Теорема. Чутыс кӧ оз куйлы веськыд визь вылын, сэтшӧм чут пыр позьӧ гижтыны тайӧ веськыд визьлы параллель.

Подулалӧм. Мед миян эм m веськыд визь да A чут, коді оз куйлы сы вылын. Гижтам A чутысь m-лань перпендикуляр (пасъям сійӧс l). Сэсся A чут пыр гижтам l-лы перпендикуляр (пасъям сійӧс n). Миян артмӧ: l лоӧ перпендикулярӧн m-лы да n-лы. Сідзкӧ, m да n параллельяс (воддза теорема серти).

Parall nuedem1.jpg

Параллель визьяслӧн тӧдмӧг

пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс – внутренние накрест лежащие углы
ортсыса ӧтар-мӧдар куйлысь пельӧсъяс – внешние накрест лежащие углы
пытшкӧсса ӧтарбокса пельӧсъяс – внутренние односторонние углы
ортсыса ӧтарбокса пельӧсъяс – внешние односторонние углы
весьтаса пельӧсъяс – соответственные углы

Гижтам кык веськыд визь да нӧшта ӧти визь, коді найӧс вомӧналӧ. Тайӧ вомӧналысь визь серти позьӧ пасйыны татшӧм пельӧсъяс (петкӧдлӧма серпас вылын):

  • пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс,
Pyts padv pel1.jpg
  • ортсыса ӧтар-мӧдар куйлысь пельӧсъяс,
Orts padv pel.jpg
  • пытшкӧсса ӧтарбокса пельӧсъяс,
Pyts etarboksa.jpg
  • ортсыса ӧтарбокса пельӧсъяс,
Orts etarboksa.jpg
  • весьтаса пельӧсъяс.
Vestasa.jpg

(петкӧдлыны серпас вылын став вариант − 2, 2, 2, 2, 4)

Теорема. Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.

Parall tedm1.jpg

Подулалӧм. Эм кык веськыд визь: AC да BD; найӧс вомӧналӧ нӧшта ӧти визь: AB; та дырйи ∠ABD = ∠BAC. Пасъям AB вундӧглысь шӧрчутсӧ M шыпасӧн. Гижтам M чут пыр AC веськыд визьлань MP перпендикуляр. Чут, кӧні сійӧ вомӧнасьӧ BD-кӧд, пасъям Q шыпасӧн. ∠AMP да ∠BMQ — вертикаль пельӧсъяс, та вӧсна найӧ ӧтыдждаӧсь. Сідзкӧ, ∆AMP = ∆BMQ мӧд тӧдмӧг серти. Сэк и ∠BQM = ∠APM. MP лоӧ AC‐лы перпендикуляр, сійӧн ∠APM = 90°; сідзкӧ и ∠BQM = 90°. Миян артмӧ: BQ да AP веськыд визьяс лоӧны PQ веськыд визьлы перпендикуляръясӧн. Сідзкӧ, найӧ куйлӧны мӧда-мӧдлы параллель ногӧн водзджык подулалӧм теорема серти.

Теорема. Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти ортсыса ӧтар-мӧдар куйлысь пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.

Подулалӧм. Мед ∠1, ∠2 – ортсыса ӧтар-мӧдар куйлысь пельӧсъяс, ∠1 = ∠2.

Parall tedm2.jpg

∠1 = ∠3, ∠2 = ∠4 кыдзи вертикаль пельӧсъяс. Сідзкӧ, ∠3 = ∠4. Тайӧ пельӧсъясыс – пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс. Воддза теорема серти, веськыд визьясыс параллель ногаӧсь.

Теорема. Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти ӧтарбокса пытшкӧсса либӧ ортсыса пельӧсъяслӧн суммаыс кӧ 180°, веськыд визьясыс параллель ногаӧсь.

Подулалӧм. Мед ∠1, ∠2 – пытшкӧсса ӧтарбокса пельӧсъяс, ∠1 + ∠2 = 180°.

Parall tedm3.jpg

∠2 да ∠3 орччаӧсь, та вӧсна ∠2 + ∠3 = 180°. Сідзкӧ, ∠1 = ∠3. ∠1 да ∠3 пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс; водзджык подулалӧм теорема серти та дырйи веськыд визьясыс лоӧны параллель ногаӧсь.

Ортсыса ӧтарбокса пельӧсъяслӧн суммаыс кӧ 180° ыджда, теоремасӧ подулалам сэтшӧм жӧ ногӧн.

Теорема. Эм кык веськыд визь, найӧс вомӧналӧ нӧшта ӧти визь. Вомӧналысь визь серти весьтаса пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс параллель ногаӧсь.

Подулалӧм. Мед ∠1, ∠2 – весьтаса пельӧсъяс, ∠1 = ∠2.

Parall tedm4 1.jpg

∠1 да ∠3 — вертикаль пельӧсъяс, та вӧсна ∠1 = ∠3. Сідзкӧ ∠2 = ∠3. Но ∠2 да ∠3 — пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс. А водзджык подулалӧм теорема серти та дырйи веськыд визьясыс лоӧны параллель ногаӧсь.

Параллель йылысь аксиома

Аксиома. Веськыд визьысь ортсыын куйлысь чут пыр позьӧ гижтыны дзик ӧти параллель.

Par aks1.jpg

Теорема. Кык торъялана веськыд визь кӧ лоӧны параллельясӧн коймӧд веськыд визьлы, найӧ лоӧны ӧта-мӧдыслы параллельясӧн.

Подулалӧм. Мед a да b веськыд визьяс лоӧны c веськыд визьлы параллельясӧн. Найӧ кӧ вомӧнасьӧны кутшӧмкӧ чутын, тайӧ чут пырыс мунӧ c-лы кык торъялана параллель. Тайӧ оз лӧсяв аксиомакӧд.

Par transit.jpg

Параллель нога веськыд визьяслӧн аслунъяс

Теорема. Кор параллель ногӧн куйлысь кык веськыд визьсӧ вомӧналӧ коймӧд веськыд визь, сэки артмӧм пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс ӧтыдждаӧсь.

Подулалӧм. Мед AD да BC параллельяс, AB веськыд визь найӧс вомӧналӧ. Миянлы колӧ петкӧдлыны: ∠DAB = ∠CBA.

(серпас)

Гижтам A чут пыр AE веськыд визь сідзи, медым ∠EAB = ∠CBA. Кыдзи ми тӧдам нин, пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс кӧ ӧтыдждаӧсь, веськыд визьясыс лоӧны параллельясӧн. Сійӧн EA-лы да BC-лы быть лоны параллельясӧн.

Мый эськӧ вӧлі, ∠DAB да ∠CBA кӧ эз вӧвны ӧтыдждаӧсь? Сэки AD да AE вӧліны эськӧ торъялана веськыд визьясӧн, кыдзи петкӧдлӧма серпас вылын.

Omp par.jpg

Та дырйи A чут пыр муніс эськӧ BC-лы торъялана кык параллель: AD да AE, а тайӧ оз лӧсяв аксиомакӧд.

Теорема. Параллель ногӧн куйлысь кык веськыд визьсӧ кӧ вомӧналӧ коймӧд веськыд визь, сысянь ортсыса ӧтар-мӧдар куйлысь пельӧсъяс ӧтыдждаӧсь.

Omo par.jpg

Подулалӧм. Гижтам серпас, кӧні ∠1 да ∠2 – ортсыса ӧтар-мӧдар куйлысь пельӧсъяс.

  • Та дырйи ∠1 = ∠3, ∠2 = ∠4, ставныс вертикаль пельӧсъяс да сійӧн;
  • а ∠3 = ∠4, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да (воддза теорема серти).

Сідзкӧ ∠1 = ∠2.

Теорема. Кор параллель ногӧн куйлысь кык веськыд визьсӧ вомӧналӧ коймӧд веськыд визь, сэки ӧтарбокса пытшкӧс (ортсы) пельӧсъяслӧн суммаыс лоӧ 180°.

Ort otar.jpg

Подулалӧм. Мед ∠1 да ∠2 — пытшкӧсса ӧтарбокса пельӧсъяс. Серпас вылысь ми аддзам:

  • ∠1 да ∠3 орчча пельӧсъяс, та вӧсна ∠1 + ∠3 = 180°;
  • ∠3 = ∠2, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да сійӧн ӧткодьӧсь (теорема серти).

Сідзкӧ ∠1 + ∠2 = 180°.

Ортсыса ӧтарбокса пельӧсъяс йылысь теоремасӧ подулалам сэтшӧм жӧ ногӧн.

Теорема. Кор параллель ногӧн куйлысь кык веськыд визьсӧ вомӧналӧ коймӧд веськыд визь, сэки весьтаса пельӧсъяс ӧтыдждаӧсь.

Par vest1.jpg

Подулалӧм. Мед ∠1 да ∠2 — весьтаса пельӧсъяс. Серпас вылысь ми аддзам:

  • ∠2 = ∠3, найӧ вертикаль пельӧсъяс да сійӧн ӧтыдждаӧсь;
  • ∠1 = ∠3, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да сійӧн ӧткодьӧсь (теорема серти).

Сідзкӧ ∠1 = ∠2.

Куимсэрӧгын пельӧсъяслӧн суммаыс

Теорема. Куимсэрӧгын став пельӧслӧн суммаыс 180° ыджда.

Kuimp180.jpg

Подулалӧм. Мед ABC — куимсэрӧг. Арталам сы пельӧсъяслысь суммасӧ: ∠BAC + ∠ABC + ∠BCA. Та могысь гижтам B чут пыр AC-лы параллель ногӧн DE веськыд визьсӧ. Кыдзи аддзам, ∠DBA, ∠ABC да ∠EBC ӧтув артмӧдӧны павтыртӧм пельӧс, сылӧн ыдждаыс 180°. Сы вӧсна мый ∠DBA = ∠BAC, ∠EBC = ∠BCA (найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да), ∠BAC, ∠ABC да ∠BCA ӧтув тшӧтш сетасны 180° ыджда. Мӧд ног шуны, ∠BAC + ∠ABC + ∠BCA = 180°.

Теорема. Куимсэрӧглӧн ортсы пельӧсыс лоӧ сылы абу орчча пытшкӧс пельӧсъяс суммакӧд ӧтыджда.

Ortsy pel.jpg

Подулалӧм. Мед ABC — куимсэрӧг, ∠ABD — сылӧн ортсы пельӧс. Миянлы колӧ артмӧдны: ∠ABD = ∠BAC + ∠BCA. Кыдзи аддзам, ∠ABD + ∠ABC = 180°, найӧ орчча пельӧсъяс да. Сійӧн ∠ABD = 180° – ∠ABC. Воддза теорема серти кӧ, ∠BAC + ∠ABC + ∠BCA = 180°. Сійӧн 180° – ∠ABC = ∠BAC + ∠BCA. А сідзкӧ, ∠ABD = ∠BAC + ∠BCA.

Теорема. Ӧткодь доръяса куимсэрӧгын быд пельӧсыс 60° ыджда.

Подулалӧм. Кыдзи ми тӧдам нин, ӧткодь доръяса куимсэрӧгын став пельӧсыс ӧтыдждаӧсь, а суммаын найӧ сетӧны 180°. Сідзкӧ, быд пельӧсыс лоӧ 180° : 3 = 60° ыджда.

Теорема. Бурпельӧса куимсэрӧгын ёсь пельӧсъясыслӧн суммаыс 90° ыджда.

Veskyd kuimp 90 1.jpg

Подулалӧм. Мед ABC куимсэрӧгын ∠B = 90°. Кыдзи ми тӧдам нин, ∠A + ∠B + ∠C = 180°. Сідзкӧ ∠A + ∠C = 180° – ∠B = 90°.

Теорема. Бурпельӧса ӧткодь берда куимсэрӧгын кыкнан ёсь пельӧсыс 45° ыдждаӧсь.

Подулалӧм. Кыдзи ми тӧдам нин, бурпельӧса ӧткодь берда куимсэрӧгын ёсь пельӧсъясыс ӧтыдждаӧсь, а суммаын найӧ сетӧны 90°. Сідзкӧ, быд ёсь пельӧсыс лоӧ 90° : 2 = 45° ыджда.

45 60 peljesjas.jpg

Теорема. Бурпельӧса куимсэрӧгын кӧ ӧти ёсь пельӧсыс 30° ыджда, сылы паныда катетыс лоӧ гипотенуза джын кузьта.

Kuimp30.jpg

Подулалӧм. Мед ABC — бурпельӧса куимсэрӧг, кӧні ∠A = 30°, ∠B = 90°. Сідзкӧ ∠C = 90° – 30° = 60°. Нюжӧдам BC дорсӧ B чут сайӧ да пуктам CB визьньӧв вылӧ D чут сідзи, медым B вӧлі CD вундӧглӧн шӧр чутнас. Гижтам AD вундӧг. Миян артмӧ: ∠ABD = 180° – ∠ABC = 90°; BD = BC. Сідзкӧ ABD да ABC куимсэрӧгъясыд кык катет сертиныс ӧткодьӧсь. Та вӧсна ∠ADB = ∠ACB = 60°, ∠BAD = ∠BAC = 30°. Видлалам CAD куимсэрӧг. Сыын ∠ACD = ∠ADC = 60°, ∠DAC = ∠BAD + ∠BAC = 60°. Сідзкӧ ∠ACD = ∠ADC = ∠DAC. Кыдзи ми тӧдам нин, куимсэрӧгын кӧ став пельӧсыс ӧтыджда, тайӧ куимсэрӧгыс ӧткодь доръяса. Сідзкӧ AC = CD. Но BC = CD/2. Со миян и артмис: BC = AC/2.

Теорема. Бурпельӧса куимсэрӧгын кӧ ӧти катетыс лоӧ гипотенуза джын кузьта, тайӧ катетыслы паныд куйлӧ 30° ыджда пельӧс.

Kuimp1 2.jpg

Подулалӧм. Мед ABC — бурпельӧса куимсэрӧг, кӧні ∠B = 90°, BC = AC/2. Нюжӧдам BC дорсӧ B чут сайӧ да пуктам CB визьньӧв вылӧ D чут сідзи, медым B вӧлі CD вундӧглӧн шӧр чутнас. Гижтам AD вундӧг. Миян артмӧ: ∠ABD = 180° – ∠ABC = 90°; BD = BC. Сідзкӧ ABD да ABC куимсэрӧгъясыд кык катет сертиныс ӧткодьӧсь. Та вӧсна AD = AC. Видлалам CAD куимсэрӧг. Сыын AD = AC, CD = 2BC = AC. Сідзкӧ тайӧ куимсэрӧгыс ӧткодь доръяса. Кыдзи ми тӧдам нин, татшӧм куимсэрӧгын став пельӧсыс 60° ыджда. Сідзкӧ ∠ACB = 60°, ∠BAC = 90° – 60° = 30°.

Нёльпельӧсаяс (нёльсэрӧгъяс)

нёльпельӧса, нёльсэрӧг — четырёхугольник
орчча йывъяс (доръяс) — соседние вершины (стороны)
воча йывъяс (доръяс) — противоположные вершины (стороны)

Нёльпельӧсаӧн либӧ нёльсэрӧгӧн шусьӧ нёль чутысь да найӧс сьӧрсьӧн-бӧрсьӧн йитан нёль вундӧгысь тэчӧм мыгӧр. Та дырйи, тайӧ нёль чут письыс сӧмын кыкыс куйлӧны ӧти веськыд визьын, а вундӧгъясыс вермӧны вомӧнасьны сӧмын помъясас.

Njolpelesa.jpg

Нёльпельӧса артмӧдысь чутъяссӧ шуам нёльсэрӧг йывъясӧн, а найӧс йитысь вундӧгъяссӧ — нёльсэрӧг доръясӧн.

Njolp jyv dor.jpg

Нёльпельӧса кӧ артмӧдӧма A, B, C, D чутъясысь да найӧс йитан AB, BC, CD, DA вундӧгъясысь, сэки гижӧны: ABCD нёльпельӧса.

Нёльсэрӧглысь кык йывсӧ шуам орччаӧн, найӧ кӧ лоӧны ӧти дорлы помъясӧн. Кык дорсӧ шуам орччаӧн, найӧ кӧ петӧны ӧти йылысь.

Orcca jyv dor.jpg

Нёльсэрӧглысь кык йывсӧ шуам вочаӧн, найӧ кӧ абу орччаӧсь. Кык дорсӧ шуам вочаӧн, найӧ кӧ абу орччаӧсь. Кык воча йыв йитысь вундӧгсӧ шуам диагональӧн.

Voca jyv dor.jpg

Нёльсэрӧгын пельӧсъяслӧн суммаыс

Теорема. Нёльсэрӧгын став пельӧслӧн суммаыс 360° ыджда.

Njolp sum.jpg

Подулалӧм. Гижтам нёльсэрӧг пытшкас диагональ (серпас вылын тайӧ AC), коді юкӧ сійӧс кык куимсэрӧг вылӧ. Миян артмӧ: ∠A + ∠B + ∠C + ∠D = ∠BAC + ∠ABC + ∠BCA + ∠CAD + ∠ADC + ∠ADC = 180° + 180° = 360°.

Параллелограмм

Нёльсэрӧг, кӧні воча доръяс куйлӧны параллель ногӧн, шусьӧ параллелограммӧн.

Parallelogr.jpg

Параллелограммлӧн тӧдмӧгъяс

1-ӧд тӧдмӧг. Нёльсэрӧгын кӧ воча пельӧсъясыс ӧтыдждаӧсь, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.

Parallelogr 1 todm1.jpg

Подулалӧм. Мед ABCD — нёльсэрӧг, ∠A = ∠C, ∠B = ∠D. Кыдзи ми тӧдам нин, нёльсэрӧгын став пельӧслӧн суммаыс 360° ыджда. Сідзкӧ, 2∠A + 2∠B = 360°, ∠A + ∠B = 180°. Сыысь петӧ: AD да BC параллель ногаӧсь, ӧд A да ∠B — пытшкӧсса ӧтарбокса пельӧсъяс, а налӧн суммаыс 180°.

Тадзи жӧ артмӧ: AB да CD куйлӧны параллель ногӧн.

2-ӧд тӧдмӧг. Нёльсэрӧглӧн диагональясыс кӧ вомӧнасьӧны шӧр чутаныс, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.

Parallelogr 2 todm.jpg

Подулалӧм. Мед ABCD — нёльсэрӧг, O чут — AC да BD диагональяслӧн вомӧнасянін, AO = OC, BO = OD. AOB да COD пельӧсъяс ӧтыдждаӧсь, найӧ вертикаль пельӧсъяс да. Сідзкӧ ∆AOB = ∆COD медводдза тӧдмӧг серти. Та вӧсна ∠OAB = ∠OCD. Сідзкӧ ABCD, ӧд ∠OAB да ∠OCD — пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс.

Тадзи жӧ артмӧ: ADBC.

3-ӧд тӧдмӧг. Нёльсэрӧглӧн кӧ кык воча дор ӧтыдждаӧсь да куйлӧны параллель ногӧн, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.

Parallelogr 3 todm.jpg

Подулалӧм. Мед ABCD — нёльсэрӧг, AB = CD, ABCD. Гижтам AC да BD диагональяс. Мед O — налӧн вомӧнасянін.

Parallelogr 3 todm0.jpg

BAO = ∠DCO да ∠ABO = ∠CDO, ӧд найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс, а AB да CD — параллельяс.

Миян артмӧ: AB = CD, ∠BAO = ∠DCO, ∠ABO = ∠CDO. Сідзкӧ ∆AOB = ∆COD куимсэрӧгъяс ӧткодьлунлӧн мӧд тӧдмӧг серти. Та вӧсна AO = OC, BO = OD. Сідзкӧ ABCD — параллелограмм, воддза теорема серти.

4-ӧд тӧдмӧг. Нёльсэрӧглӧн кӧ воча доръясыс ӧтыдждаӧсь, тайӧ нёльсэрӧгыс лоӧ параллелограммӧн.

Parallelogr 4 todm.jpg

Подулалӧм. Мед ABCD — нёльсэрӧг, кӧні AB = CD, AD = BC. Гижтам AC диагональ.

Parallelogr 4 todm084.jpg

Сэки ∆ABC = ∆CDA коймӧд тӧдмӧг серти. Сідзкӧ, ∠BCA = ∠CAD.

Parallelogr 4 todm1.jpg

Но ∠BCA да ∠CAD — пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс. Сідзкӧ BCAD. Та вӧсна ABCD – параллелограмм, воддза теорема серти.

Параллелограммлӧн аслунъяс

1-ӧд аслун. Параллелограммлӧн воча пельӧсъяс ӧтыдждаӧсь.

Par tor1.jpg

Подулалӧм. Мед ABCD — параллелограмм. Сэки ∠A + ∠B = 180°, ∠B + ∠C = 180° (найӧ пытшкӧсса ӧтарбокса пельӧсъяс да). Сідзкӧ ∠A = 180° − ∠B, дай ∠C = 180° − ∠B. Та вӧсна ∠A = ∠C. Сідзи жӧ артмӧ: ∠B = ∠D.

2-ӧд аслун. Параллелограммлӧн воча доръяс ӧтыдждаӧсь.

Par tor2.jpg

Подулалӧм. Мед ABCD — параллелограмм. Гижтам AC диагональ. Сэки ∠BAC = ∠ACD, ∠BCA = ∠CAD, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да. Сідзкӧ ABC да CDA куимсэрӧгъяс ӧткодьӧсь (мӧд тӧдмӧг серти). Та вӧсна AB = CD, AD = BC.

3-ӧд аслун. Параллелограммлӧн диагональяс вомӧнасьӧны асланыс шӧр чутас.

Par tor3.jpg

Подулалӧм. Мед ABCD — параллелограмм, O — диагональясыслӧн вомӧнасян чут. Сэки ∠OAD = ∠OCB, ∠ODA = ∠OBC, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да. Воддза теорема серти, AD = BC. Сідзкӧ AOD да COB — ӧткодь куимсэрӧгъяс (мӧд тӧдмӧг серти). Та вӧсна AO = OC, BO = OD.

Бурсэрӧг

Параллелограмм, эм кӧ сыын бур пельӧс, шусьӧ бурсэрӧгӧн.

Теорема. Бурсэрӧгын быд пельӧсыс бур.

Bursereg.jpg

Подулалӧм. Мед ABCD — бурсэрӧг, кӧні ∠A = 90°. Быд бурсэрӧг лоӧ параллелограммӧн. Кыдзи ми тӧдам нин, параллелограммын воча пельӧсъяс ӧтыдждаӧсь, а пытшкӧсса ӧтарбокса пельӧсъяслӧн суммаыс лоӧ 180°. Сідзкӧ ∠A + ∠B = 180°, ∠A + ∠D = 180°, ∠A = ∠C. Та вӧсна ∠B = ∠C = ∠D = 90°.

Теорема. Бурсэрӧгын диагональясыс ӧтыдждаӧсь.

Bursereg1.jpg

Подулалӧм. Мед ABCD — бурсэрӧг. Гижтам сылы AC да BD диагональяс. Артмӧ кык бурпельӧса куимсэрӧг: ∆BAD да ∆CDA, кӧні ∠BAD = ∠CDA = 90°. Налӧн эм ӧтувъя AD катет. Мӧд кык катетыс тшӧтш ӧткузяӧсь: AB = DC (найӧ параллелограммын воча доръяс да). Сідзкӧ ∆BAD = ∆CDA кык катет серти. Та вӧсна AC = BD.

Теорема. Параллелограммын диагональясыс кӧ ӧтыдждаӧсь, сійӧ бурсэрӧг.

Bursereg2.jpg

Подулалӧм. Мед ABCD — параллелограмм, кӧні AC = BD. Миян артмӧ: AB = CD, найӧ параллелограммын воча доръясыс да. Сідзкӧ ∆BAD = ∆CDA коймӧд тӧдмӧг серти. Та вӧсна ∠BAD = ∠CDA. Но ∠BAD + ∠CDA = 180°, найӧ пытшкӧсса ӧтарбокса пельӧсъяс да. Сідзкӧ ∠BAD = 90°.

Ромб

Параллелограмм, сылӧн став дорыс кӧ ӧткузьта, шусьӧ ромбӧн.

Romb1.jpg

Теорема. Ромбын диагональыс лоӧ сы пельӧслы биссектрисаӧн.

Romb bis.jpg

Подулалӧм. Мед ABCD — ромб. Сэки ABC — ӧткодь берда куимсэрӧг. Та вӧсна ∠BAC = ∠BCA, найӧ подувбердса пельӧсъясыс да. Та кындзи, ∠BAC = ∠DCA, ∠BCA = ∠DAC, найӧ пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс да. Миян артмӧ: ∠BCA = ∠BAC = ∠DCA, ∠BAC = ∠BCA = ∠DAC. Сідзкӧ AC — ромбса ∠A да ∠C пельӧсъясыслӧн биссектриса.

Теорема. Ромбын диагональясыс куйлӧны перпендикуляр ногӧн.

Romb perp.jpg

Подулалӧм. Мед ABCD — ромб. Воддза теорема серти, BD диагональ лоӧ ∠ABC пельӧслы биссектрисаӧн. AB = BC (ромбын доръясыс ӧткузяӧсь да); сідзкӧ ∆ABC — ӧткодь берда куимсэрӧг, ∠ABC — сылӧн йывса пельӧс. Кыдзи ми тӧдам нин, ӧткодь берда куимсэрӧгын йывса пельӧслӧн биссектриса лоӧ судтаӧн. Сідзкӧ BD да AC — перпендикуляръяс.

Теорема. Параллелограмм, кӧні диагональыс юклӧ пельӧссӧ шӧрипӧв, лоӧ ромбӧн.

Bis romb.jpg

Подулалӧм. Мед ABCD — параллелограмм, кӧні BD диагональ юклӧ ∠ABC пельӧссӧ шӧрипӧв. Сідзкӧ ∠ABD = ∠CBD. ∠CBD да ∠ADB — пытшкӧсса ӧтар-мӧдар куйлысь пельӧсъяс; сідзкӧ ∠CBD = ∠ADB. Миян артмӧ: ∠ABD = ∠ADB. Сідзкӧ ∆DBA — ӧткодь берда куимсэрӧг, кӧні AB = AD. Параллелограммын воча доръясыс ӧткузяӧсь да, нёльнан дорыс ӧткодьӧсь: CD = AB = AD = BC. Сідзкӧ ABCD — ромб.

Теорема. Параллелограммын кӧ диагональясыс куйлӧны перпендикуляр ногӧн, сійӧ лоӧ ромбӧн.

Perp romb.jpg

Подулалӧм. Мед ABCD — параллелограмм, кӧні ACBD. Мед O — диагональяслӧн вомӧнасянін. Кыдзи ми тӧдам нин, параллелограммлӧн диагональяс вомӧнасьӧны асланыс шӧр чутас. Сідзкӧ AO = OC. Миян артмӧны AOB да COB куимсэрӧгъяс, найӧ бурпельӧсаӧсь да ӧткодьӧсь кык катет серти. Та вӧсна AB = BC. Параллелограммын воча доръясыс ӧткузяӧсь да, нёльнан дорыс ӧткодьӧсь: CD = AB = BC = AD. Сідзкӧ ABCD — ромб.

Квадрат

Параллелограмм шусьӧ квадратӧн, сійӧ кӧ ӧттшӧтш лоӧ бурсэрӧгӧн да ромбӧн.

Сідзкӧ квадратын:

  • став дорыс ӧткузьта;
  • став пельӧсыс 90° ыджда;
Quadrat.jpg
  • диагональясыс ӧтыдждаӧсь;
  • диагональясыс куйлӧны перпендикуляр ногӧн;
  • диагональясыс лоӧны квадратлӧн пельӧсъяслы биссектрисаясӧн.

Теорема. Квадратын диагональыс юклӧ сійӧс бурпельӧса ӧткодь берда кык куимсэрӧг вылӧ.

Quad1diag.jpg

Подулалӧм. Мед AC лоӧ ABCD квадратлы диагональӧн. ABCD — квадрат, сідзкӧ AB = BC, AD = DC, ∠ABC = ∠ADC = 90°. Та вӧсна ∆ABC да ∆ADC — ӧткодь берда бурпельӧса куимсэрӧгъяс.

Теорема. Квадратын кык диагональыс юклӧны сійӧс бурпельӧса ӧткодь берда нёль куимсэрӧг вылӧ.

Quad2diag.jpg

Подулалӧм. Кыдзи ми тӧдам нин, 1) квадратын диагональясыс куйлӧны перпендикуляр ногӧн; сідзкӧ артмӧм нёльнан куимсэрӧгыс — бурпельӧса; 2) квадратын диагональясыс ӧтыдждаӧсь да вомӧнасьӧны шӧр чутаныс; сідзкӧ артмӧм нёльнан куимсэрӧгыс — ӧткодь бердаӧсь.

Трапеция

Нёльсэрӧг, кӧні кык дорыс куйлӧны параллель ногӧн, а мӧд кыкыс абу параллель ногаӧсь, шусьӧ трапецияӧн.

Параллель доръяссӧ шуӧны трапеция подувъясӧн. Мӧд кык дорыс лоӧны трапециялы боквыв доръясӧн.

Trapecia.jpg

Трапеция, кӧні эм бур пельӧс, шусьӧ бурпельӧса трапецияӧн.

Burpeljesa tapecia.jpg

Трапеция, кӧні боквыв доръясыс ӧткузяӧсь, шусьӧ ӧткодь берда трапецияӧн.

Otk berda trap1.jpg

Теорема. Ӧткодь берда трапецияын ӧти подув бердын куйлысь пельӧсъяс ӧтыдждаӧсь.

Otk berda tr pel.jpg

Подулалӧм. Мед ABCD — трапеция, BC да AD — сылӧн подувъяс, AB = CD. Гижтам CD‐лы параллель BE, кӧні E чут куйлӧ AD вундӧг вылын. Миян артмӧ: BCDE — параллелограмм. Сідзкӧ BE = CD (параллелограммлӧн аслун серти). Но AB = CD; та вӧсна AB = BE. Кыдзи ми тӧдам нин, ӧткодь берда куимсэрӧгын подувбердса пельӧсъяс ӧтыдждаӧсь. Сідзкӧ ∠BAE = ∠BEA. BE да CD куйлӧны параллель ногӧн, та вӧсна ∠CDA = ∠BEA (найӧ весьтаса пельӧсъяс да). Миян артмис: ∠CDA = ∠BAE. Сідзкӧ ABCD трапецияын ∠A да ∠D пельӧсъяс ӧтыдждаӧсь.

Теорема. Трапецияын кӧ ӧти подув бердын куйлысь пельӧсъяс ӧтыдждаӧсь, тайӧ трапецияыс ӧткодь берда.

Pel otk berda tr.jpg

Подулалӧм. Мед ABCD — трапеция, BC да AD — сылӧн подувъяс, ∠CDA = ∠BAD. Гижтам CD‐лы параллель BE, кӧні E чут куйлӧ AD вундӧг вылын. Сідзкӧ BCDE — параллелограмм. Параллелограммлӧн аслун серти, BE = CD. ∠CDA да ∠BEA ӧтыдждаӧсь, найӧ весьтаса пельӧсъяс да. Та вӧсна ∠BAE = ∠BEA. Кыдзи ми тӧдам нин, куимсэрӧгын кӧ эм кык ӧтыджда пельӧс, тайӧ куимсэрӧгыс ӧткодь берда. Сідзкӧ AB = BE. Но BE = CD. Со миян и артмис: AB = CD.

Водзӧ лыддьӧй: Планиметрия курс − 2.

Содтӧд юӧр