Фудзиталӧн аксиомаяс йылысь — различия между версиями

Материал из Коми тӧданін
(Содтӧд юӧр)
(Терминъяс)
Строка 1: Строка 1:
 
==Терминъяс==
 
==Терминъяс==
  
 +
куимпельӧса – треугольник
 
  ӧткодь доръяса куимпельӧса – равносторонний треугольник
 
  ӧткодь доръяса куимпельӧса – равносторонний треугольник
 
  бур унапельӧса – правильный многоугольник
 
  бур унапельӧса – правильный многоугольник
Строка 6: Строка 7:
 
  кытшвизь – окружность
 
  кытшвизь – окружность
 
  веськыдпельӧса куимсэрӧг – прямоугольный треугольник
 
  веськыдпельӧса куимсэрӧг – прямоугольный треугольник
 +
судта – высота
  
 
==Фудзиталӧн аксиомаяс==
 
==Фудзиталӧн аксиомаяс==

Версия 21:45, 5 сора 2020

Терминъяс

куимпельӧса – треугольник
ӧткодь доръяса куимпельӧса – равносторонний треугольник
бур унапельӧса – правильный многоугольник
вундӧг – отрезок
кытшвизь – окружность
веськыдпельӧса куимсэрӧг – прямоугольный треугольник
судта – высота

Фудзиталӧн аксиомаяс

Аксиомаяссӧ позьӧ аддзыны татысь.

Мый позьӧ артмӧдны Фудзиталӧн медводдза нёль аксиомаӧн вӧдитчӧмӧн?

Позьӧ артмӧдны квадрат да ӧткодь доръяса куимпельӧса. Лӧсьӧдім кӧ квадрат да ӧткодь доръяса куимпельӧса – та бӧрын бур квайтпельӧса да бур кӧкъямыспельӧса артмӧдны абу нин сьӧкыд.

Дай бур витпельӧса тшӧтш позьӧ лӧсьӧдны куш нёль аксиоманас вӧдитчӧмӧн.

Bur unapeljesajas.jpg

Таысь кындзи, позьӧ артмӧдны куимпельӧса, сетӧма кӧ сылысь кык дор да на костса пельӧс, либӧ ӧти дор да сы бердса кык пельӧс.

Тайӧ этша на. Нёль аксиома кежысь позьӧ оз сӧмын бур унапельӧсаяссӧ артмӧдны, а и пропорциялы вундӧг корсьны. Петкӧдлам, кыдзи вӧчны тайӧс.

Тшӧтшкӧс вылын куим вундӧг гижтӧма: a, b, c. Колӧ артмӧдны нёльӧд вундӧг (пасъям сійӧс x-ӧн), медым a : b = c : x.

Proporc3.jpg

1. Кабаласӧ кусыньтӧмӧн артмӧдам кутшӧмкӧ пельӧс (серпасас сійӧ сьӧд рӧмӧн гижтӧма).

Proporc4.jpg

Пельӧс йылас пуктам a, b да c-лысь ӧти помнысӧ (тайӧс позьӧ вӧчны кабала кусыньтӧмӧн жӧ, 2-ӧд аксиома серти). Артмасны a’ = a, b’ = b, c’ = c вундӧгъяс.

Proporc0.jpg

2. a’ да b’ вундӧгъяссӧ ӧти пельӧс дор вылӧ пуктам, c’ вундӧгсӧ – мӧд дор вылас (3-ӧд аксиома серти).

Proporc1.jpg

Артмӧ: OA = a, OB = b, OC = c.

3. A да C чутъяс пыр веськыд визь нуӧдам (1-ӧд аксиома серти). Сэсся B чут пыр AC-лы перпендикуляр гижтам (4-ӧд аксиома серти). Пасъям сійӧс k-ӧн. Сы бӧрын B чут пыр k-лы перпендикуляр нуӧдам (пасъям сійӧс m-ӧн). Миян артмӧ: m да AC – параллель нога визьяс.

Proporc2.jpg

OC да m вомӧнасьӧны D чутын. Фалес теорема серти, OA : OB = OC : OD, либӧ a : b = c : OD.

Со корсянторыс и сюрӧма.

Мый позьӧ артмӧдны Фудзиталӧн медводдза вит аксиомаӧн вӧдитчӧмӧн?

Ӧні петкӧдлам, мый миянлы сетас витӧд аксиомаыс. Медводз казьтыштам да гӧгӧрвоӧдам сійӧс.

Сетӧма A да B чутъяс да k веськыд визь. Витӧд аксиома серти, кабаласӧ позьӧ кусыньтны сідзи, медым A чутыс k визяс веськаліс (серпас вылас сійӧ веськалӧ C чутӧ), а кусыньтанін B чут пыр муніс. Кусыньтанін лоӧ AC вундӧглы шӧр перпендикуляр, та вӧсна AB = BC.

Aksi1.jpg

B шӧрчута да AB радиуса кытшвизьсӧ пасъям w-ӧн. Миян артмӧ: C чутыс лоӧ k веськыд визь да w кытшвизь вомӧнасянін.

Aksi.jpg

Дерт, витӧд аксиомасӧ колӧ стӧчмӧдны: колана кусыньтӧм эм сӧмын сэк, кор веськыд визьыс вомӧнасьӧ кытшвизьыскӧд; веськыд визьыс кӧ кытшвизьыскӧд вомӧнасьӧ кык чутын, кабаласӧ кык ногӧн позьӧ кусыньтны.

Сідзкӧ, витӧд аксиомаӧн вӧдитчӧмӧн позьӧ корсьны индӧм кытшвизьлысь да веськыд визьлысь вомӧнасян чутсӧ. Та вӧсна веськыдпельӧса куимсэрӧгсӧ сетӧм катет да гипотенуза серти лӧсьӧдны абу сьӧкыд. Петкӧдлам, кыдзи вӧчны сійӧс. Мед a – катет кузьта вундӧг, c – гипотенуза кузьта вундӧг.

1. c вундӧглысь ӧти помсӧ a помӧ пуктам (2-ӧд аксиома серти).

2. a вундӧглӧн мӧд пом пырыс h перпендикуляр нуӧдам (4-ӧд аксиома серти).

Aksi3.jpg

3. кабаласӧ кусыньтам сідзи, медым A чут h-ӧ веськаліс да кусыньтанін B чут пыр муніс (5-ӧд аксиома серти); серпас вылас A чут C чутӧ веськалӧ. Сэсся B да C чутъяс пыр веськыд визь нуӧдам. KBC – колана куимсэрӧгыс.

Aksi4.jpg

Подув да боквыв дор сертиыс пӧшти сэтшӧм жӧ ногӧн артмӧдӧны и ӧткодь берда куимпельӧса. Сідзкӧ, вит аксиомаӧн вӧдитчӧмӧн ӧткодь доръяса куимпельӧса позьӧ вӧчны Пифагор теоремасӧ казьтывтӧг.

Пасйӧд

Содтӧд юӧр

Велӧдӧм паськӧдан блогын - 1.
Велӧдӧм паськӧдан блогын - 2.