Планиметрия курс — различия между версиями
Ӧньӧ Лав (сёрнитанін | чӧжӧс) (→Тшӧтшкӧсджын) |
Ӧньӧ Лав (сёрнитанін | чӧжӧс) (→Тшӧтшкӧсджын) |
||
Строка 63: | Строка 63: | ||
[[Файл:Thothkesdzyn.jpg|thumb|center|330px|]] | [[Файл:Thothkesdzyn.jpg|thumb|center|330px|]] | ||
− | '''Аксиома.''' Сетӧма кӧ ''l'' веськыд визь да сы вылын куйлысь ''O'' чут, | + | '''Аксиома.''' Сетӧма кӧ ''l'' веськыд визь да сы вылын куйлысь ''O'' чут, быть сюрасны и сэтшӧм ''A'' да ''B'' чутъяс, кодъяслы лӧсялӧ татшӧмтор: ''A'', ''O'', ''B'' абу ӧтилаынӧсь, ''A'' да ''B'' куйлӧны ''l'' вылын да ''O'' чутыс куйлӧ ''A'' да ''B'' чутъяс костын. |
[[Файл:AOB_aks.jpg|thumb|center|330px|]] | [[Файл:AOB_aks.jpg|thumb|center|330px|]] |
Версия 15:26, 31 йирым 2020
Содержание
Веськыд визь йылысь аксиомаяс
тшӧтшкӧс – плоскость веськыд визь – прямая чут – точка мыгӧр – фигура кывкӧртӧд – следствие эскӧдӧм – доказательство кыв вожалӧм – противоречие
Планиметрияӧн шусьӧ геометриялӧн юкӧн, кӧні велӧдӧны тшӧтшкӧсвывса мыгӧръяс.
Тшӧтшкӧслысь, веськыд визьлысь, чутлысь медшӧр торъяланлунъяссӧ индам аксиомаяс пыр.
Аксиома. Эм кӧ тшӧтшкӧсын веськыд визь, сэк тшӧтшкӧсса чутъяс пӧвстысь кодсюрӧяс лоасны тайӧ визьын, а мукӧдыс сыысь ортсын.
Аксиома. Кык торъялана чут пыр позьӧ нуӧдны веськыд визь; татшӧм визьыс овлӧ сӧмын ӧти.
Кывкӧртӧд. Вомӧнасьӧны кӧ кык торъялана веськыд визь, вомӧнасян чутныс лоӧ сӧмын ӧти.
Эскӧдӧм. Мед, шуам, веськыд визьясыс вомӧнасьӧны торъялана кык чутын. Сідзкӧ, тайӧ чутъяс пырыс позьӧ гижтыны кык торъялана веськыд визь. А аксиомаыд серти, татшӧм визьыс на пыр вермас мунны сӧмын ӧти. Артмӧ кыв вожалӧм.
Вундӧг
вундӧг – отрезок
Аксиома. Ӧти веськыд визьса куим торъялан чут пиысь ӧтиыс лоӧ мӧд кык костас; татшӧм чутыс овлӧ сӧмын ӧти.
Кык чут на костса став чутыскӧд ӧтув артмӧдӧны вундӧг. Индӧм кык чутыс шусьӧны вундӧг помъясӧн.
Аксиома. Быд вундӧглӧн эм кузьта – плюса лыд.
Вундӧг помъясын кӧ А да В чутъяс, шуам татшӧм вундӧгсӧ АВ; тадзи жӧ и сылысь кузьтасӧ шуам.
Аксиома. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; B-ыс куйлӧ A да C костас. Сэки AC = AB + BC.
Кывкӧртӧд. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; B-ыс куйлӧ A да C костас. Сэки AC > AB, AC > BC.
Кывкӧртӧд. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; AC = AB + BC. Сэки B-ыс куйлӧ A да C костас.
Эскӧдӧм. Миян артмӧ: AC > AB, AC > BC. A чутыс кӧ куйлӧ B да C костас, BC > AC; C чутыс кӧ куйлӧ A да B костас, AB > AC. Сідзкӧ, B-ыс куйлӧ A да C костас.
Тшӧтшкӧсджын
тшӧтшкӧсджын – полуплоскость
Аксиома. Быд веськыд визь юклӧ тшӧтшкӧссӧ кык тшӧтшкӧсджын вылӧ. Кык чут A да B куйлӧны ӧти тшӧтшкӧсджынйын, оз кӧ AB вундӧгыс вомӧнав индӧм веськыд визьсӧ.
Сідзкӧ, AB-ыс кӧ вомӧналӧ тайӧ веськыд визьсӧ, A да B чутъясыс куйлӧны торъя тшӧтшкӧсджынъясын.
Аксиома. Сетӧма кӧ l веськыд визь да сы вылын куйлысь O чут, быть сюрасны и сэтшӧм A да B чутъяс, кодъяслы лӧсялӧ татшӧмтор: A, O, B абу ӧтилаынӧсь, A да B куйлӧны l вылын да O чутыс куйлӧ A да B чутъяс костын.
Визьньӧв
визьньӧв – луч веськыд визьджын – полупрямая
Мед O чут куйлӧ l веськыд визь вылын. Босьтам l сайын куйлысь M чутсӧ. Нуӧдам O да M чутъяс пыр m веськыд визьсӧ. Сэки m юклӧ тшӧтшкӧссӧ кык тшӧтшкӧсджын вылӧ.
Мед A да B чутъяс куйлӧны l веськыд визь вылын. Аксиома серти, найӧ куйлӧны торъя тшӧтшкӧсджынъясын сэк да сӧмын сэк, кор O чут куйлӧ AB вундӧгын. Сідзкӧ, O чут юклӧ l веськыдсӧ кык юкӧн вылӧ; тайӧ юкӧнъясыс шусьӧны визьньӧвъясӧн либӧ веськыд визьджынъясӧн.
OA да OB – кык визьньӧв:
Пельӧс йылысь аксиомаяс
пельӧс – угол пельӧс дор – сторона угла пельӧс йыв – вершина угла павтыртӧм пельӧс – развёрнутый угол ёсь пельӧс – острый угол веськыд пельӧс – прямой угол тшотшыд пельӧс – тупой угол орчча пельӧсъяс – смежные углы сувтса пельӧсъяс – вертикальные углы
Ӧти чутысь петысь кык визьньӧв артмӧдӧны пельӧс. Тайӧ визьньӧвъясыс шусьӧны пельӧс доръясӧн, а налӧн ӧтувъя чутыс – пельӧс йылӧн.
Урчитӧм. Визьньӧв мунӧ пельӧс доръяс костын, сылӧн помыс кӧ лӧсялӧ пельӧс йывкӧд да сійӧ кӧ вомӧнасьӧ кутшӧмкӧ вундӧгкӧд, кодлӧн помъясыс куйлӧны пельӧс доръяс вылас.
Висьталӧм. Визьньӧв кӧ мунӧ пельӧс доръяс костын, сійӧ вомӧнасьӧ быд вундӧгкӧд, кодлӧн помъясыс куйлӧны пельӧс доръяс вылас.
Эскӧдӧм. Мед O – индӧм пельӧслӧн йыв, OM – индӧм визьньӧв. Урчитӧм серти, OM вомӧнасьӧ кутшӧмкӧ AB вундӧгкӧд, кӧні A да B чутъясыс куйлӧны пельӧс доръяс вылас. Мед CD – мӧд вундӧг, C куйлӧ OA визьньӧв вылын, D куйлӧ OB визьньӧв вылын. OM веськыд визь юкӧ тшӧтшкӧссӧ кык тшӧтшкӧсджын вылӧ; аксиома серти, A да B чутъяс куйлӧны торъя тшӧтшкӧсджынъясын. A да C чутъяс куйлӧны OA визьньӧв вылын, та вӧсна найӧ куйлӧны ӧти тшӧтшкӧсджынын OM веськыд визь серти. Сідзи жӧ артмӧ: B да D чутъяс куйлӧны ӧти тшӧтшкӧсджынын OM веськыд визь серти. Сідзкӧ, CD вундӧг вомӧнасьӧ OM веськыд визькӧд. Вомӧнасян чут да C чут куйлӧны ӧти тшӧткӧсджынын OB веськыд визь серти. Сідзкӧ, CD вундӧг вомӧнасьӧ OM визьньӧвкӧд.
Пельӧслӧн доръясыс кӧ артмӧдӧны веськыд визь, сійӧ шусьӧ павтыртӧм пельӧсӧн.
Аксиома. 1) Быд пельӧслӧн эм плюса градуса муртӧс. 2) Мед визьньӧв мунӧ пельӧс доръяс костын. Сэки пельӧсыслӧн градуса муртӧс ӧтыджда артмӧм кык пельӧсъяслӧн градуса муртӧс содтаскӧд. 3) Павтыртӧм пельӧс 180° ыджда.
Аксиома. Быд визьньӧвйӧ сылӧн йывсянь позьӧ пуктыны сетӧм кузьтаа вундӧг, да сӧмын ӧтиӧс.
Аксиома. Быд визьньӧвсянь индӧм тшӧтшкӧсджынйӧ позьӧ пуктыны сетӧм муртӧса пельӧс (180°-ысь ичӧтджыкӧс), да сӧмын ӧтиӧс.
Урчитӧм. Кык пельӧс шусьӧ орччаӧн, налӧн кӧ эм ӧтувъя дор, а мӧд доръяс кӧ артмӧдӧны веськыд визь.
Теорема. Орчча пельӧсъяс содтасыс лоӧ 180°.
Эскӧдӧм. Орчча пельӧсъяс артмӧдӧны павтыртӧм пельӧссӧ, кодлӧн ыдждаыс 180°. Сідзкӧ, аксиома серти, налӧн содтасыс лоас 180°.
Пельӧсыс кӧ 90° ыджда, сыкӧд орчча пельӧсыс сідзжӧ 90° ыджда.
Пельӧс шусьӧ ёсьӧн, сылӧн градуса муртӧсыс кӧ 90°-ысь этшаджык; веськыдӧн, сійӧ кӧ 90° ыджда; тшӧтшыдӧн, сійӧ кӧ 90°-ысь ыджыдджык.
Урчитӧм. Кык пельӧс шусьӧ сувтсаӧн, ӧтиыслӧн доръясыс кӧ лоӧны мӧд пельӧсса доръяслӧн нюжӧдӧмӧн.
Теорема. Сувтса пельӧсъяс ӧтыдждаӧсь.
Эскӧдӧм. Серпас серти, ∠AOB да ∠BOC орччаӧсь, ∠BOC да ∠COD орччаӧсь. Та вӧсна ∠AOB + ∠BOC = 180°, ∠BOC + ∠COD = 180°. Сідзкӧ, ∠AOB = 180° – ∠BOC = ∠COD.