Планиметрия курс

Материал из Коми тӧданін

Веськыд визь йылысь

тшӧтшкӧс – плоскость
веськыд визь – прямая
чут – точка
мыгӧр – фигура
кывкӧртӧд – следствие
эскӧдӧм – доказательство
кыв вожалӧм – противоречие

Планиметрияӧн шусьӧ геометриялӧн юкӧн, кӧні велӧдӧны тшӧтшкӧсвывса мыгӧръяс.

Тшӧтшкӧслысь, веськыд визьлысь, чутлысь медшӧр торъяланлунъяссӧ индам аксиомаяс пыр.

Аксиома. Эм кӧ тшӧтшкӧсын веськыд визь, сэк тшӧтшкӧсса чутъяс пӧвстысь кодсюрӧяс лоасны тайӧ визьын, а мукӧдыс сыысь ортсын.

Viz vylyn sajyn.jpg

Аксиома. Кык торъялана чут пыр позьӧ нуӧдны веськыд визь; татшӧм визьыс овлӧ сӧмын ӧти.

Kyk cut pyr.jpg

Кывкӧртӧд. Вомӧнасьӧны кӧ кык торъялана веськыд визь, вомӧнасян чутныс лоӧ сӧмын ӧти.

Эскӧдӧм. Мед, шуам, веськыд визьясыс вомӧнасьӧны торъялана кык чутын. Сідзкӧ, тайӧ чутъяс пырыс позьӧ гижтыны кык торъялана веськыд визь. А аксиомаыд серти, татшӧм визьыс на пыр вермас мунны сӧмын ӧти. Артмӧ кыв вожалӧм.

Eti vomenasjan cut1.jpg

Вундӧг

вундӧг – отрезок

Аксиома. Ӧти веськыд визьса куим торъялан чут пиысь ӧтиыс лоӧ мӧд кык костас; татшӧм чутыс овлӧ сӧмын ӧти.

Cutjas kostyn.jpg

Кык чут на костса став чутыскӧд ӧтув артмӧдӧны вундӧг. Индӧм кык чутыс шусьӧны вундӧг помъясӧн.

Ab vundeg.jpg

Аксиома. Быд вундӧглӧн эм кузьта – плюса лыд.

Вундӧг помъясын кӧ А да В чутъяс, шуам татшӧм вундӧгсӧ АВ; тадзи жӧ и сылысь кузьтасӧ шуам.

Аксиома. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; B-ыс куйлӧ A да C костас. Сэки AC = AB + BC.

Abc sum.jpg

Кывкӧртӧд. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; B-ыс куйлӧ A да C костас. Сэки AC > AB, AC > BC.

Кывкӧртӧд. Мед ӧти веськыд визьын эм куим торъя чут: A, B да C; AC = AB + BC. Сэки B-ыс куйлӧ A да C костас.

Эскӧдӧм. Миян артмӧ: AC > AB, AC > BC. A чутыс кӧ куйлӧ B да C костас, BC > AC; C чутыс кӧ куйлӧ A да B костас, AB > AC. Сідзкӧ, B-ыс куйлӧ A да C костас.

Тшӧтшкӧсджын

тшӧтшкӧсджын – полуплоскость

Аксиома. Быд веськыд визь юклӧ тшӧтшкӧссӧ кык тшӧтшкӧсджын вылӧ. Кык чут A да B куйлӧны ӧти тшӧтшкӧсджынйын, оз кӧ AB вундӧгыс вомӧнав индӧм веськыд визьсӧ.

Сідзкӧ, AB-ыс кӧ вомӧналӧ тайӧ веськыд визьсӧ, A да B чутъясыс куйлӧны торъя тшӧтшкӧсджынъясын.

Thothkesdzyn.jpg

Аксиома. Сетӧма кӧ l веськыд визь да сы вылын куйлысь O чут, быть сюрасны и сэтшӧм A да B чутъяс, кодъяслы лӧсялӧ татшӧмтор: A, O, B абу ӧтилаынӧсь, A да B куйлӧны l вылын да O чутыс куйлӧ A да B чутъяс костын.

AOB aks.jpg

Визьньӧв

визьньӧв – луч
веськыд визьджын – полупрямая

Мед O чут куйлӧ l веськыд визь вылын. Босьтам l сайын куйлысь M чутсӧ. Нуӧдам O да M чутъяс пыр m веськыд визьсӧ. Сэки m юклӧ тшӧтшкӧссӧ кык тшӧтшкӧсджын вылӧ.

Lmo.jpg

Мед A да B чутъяс куйлӧны l веськыд визь вылын. Аксиома серти, найӧ куйлӧны торъя тшӧтшкӧсджынъясын сэк да сӧмын сэк, кор O чут куйлӧ AB вундӧгын. Сідзкӧ, O чут юклӧ l веськыдсӧ кык юкӧн вылӧ; тайӧ юкӧнъясыс шусьӧны визьньӧвъясӧн либӧ веськыд визьджынъясӧн.

Lmoab.jpg

OA да OB – кык визьньӧв:

Viznjov.jpg

Аксиома. Быд визьньӧвйӧ сы йывсяньыс сетӧм кузьтаӧн позьӧ гижтыны дзик ӧти вундӧг.

Viznev vundeg.jpg

Пельӧс йылысь

пельӧс – угол
пельӧс дор – сторона угла
пельӧс йыв – вершина угла
павтыртӧм пельӧс – развёрнутый угол
ёсь пельӧс – острый угол
веськыд пельӧс – прямой угол
тшӧтшыд пельӧс – тупой угол
орчча пельӧсъяс – смежные углы
сувтса пельӧсъяс – вертикальные углы

Ӧти чутысь петысь кык визьньӧв артмӧдӧны пельӧс. Тайӧ визьньӧвъясыс шусьӧны пельӧс доръясӧн, а налӧн ӧтувъя чутыс – пельӧс йылӧн.

Peljes.jpg

Пельӧс доръяс костса визьньӧв

Урчитӧм. Визьньӧв мунӧ пельӧс доръяс костӧд, сылӧн помыс кӧ лӧсялӧ пельӧс йывкӧд да сійӧ кӧ вомӧнасьӧ кутшӧмкӧ вундӧгкӧд, кодлӧн помъясыс куйлӧны пельӧс доръяс вылас.

Vn pel kost.jpg

Висьталӧм. Визьньӧв кӧ мунӧ пельӧс доръяс костӧд, сійӧ вомӧнасьӧ быд вундӧгкӧд, кодлӧн помъясыс куйлӧны пельӧс доръяс вылас.

Эскӧдӧм. Мед O – кутшӧмкӧ пельӧслӧн йыв, OM – визьньӧв, коді мунӧ пельӧс доръяс костӧд. Урчитӧм серти, OM вомӧнасьӧ кутшӧмкӧ AB вундӧгкӧд, кӧні A да B чутъясыс куйлӧны пельӧс доръяс вылас. Мед CD – мӧд вундӧг, C куйлӧ OA визьньӧв вылын, D куйлӧ OB визьньӧв вылын.

Geom pelkost1.jpg

OM веськыд визь юкӧ тшӧтшкӧссӧ кык тшӧтшкӧсджынйӧ; аксиома серти, A да B чутъяс оз ӧти тшӧтшкӧсджынас куйлыны. A да C чутъяс куйлӧны OA визьньӧв вылын, та вӧсна найӧ куйлӧны ӧти тшӧтшкӧсджынйын, OM веськыд визь серти кӧ. Сідзи жӧ артмӧ: B да D чутъяс куйлӧны ӧти тшӧтшкӧсджынйын, OM веськыд визь серти жӧ. Сідзкӧ, CD вундӧг вомӧнасьӧ OM веськыд визьыскӧд. Пасъям вомӧнасян чутсӧ N шыпасӧн.

Петкӧдлам, мый "ОМ" веськыд визьвывса N чут куйлӧ ОМ визьньӧв вылын. N кӧ тайӧ визьньӧв вылас эз куйлы, O чут куйліс эськӧ M да N костын. Сэки, босьтам кӧ тшӧтшкӧссӧ кык джынйӧ юкысь пыдди OB веськыд визь, M да N эз эськӧ куйлыны ӧти тшӧтшкӧсджынас. Но CA, CN, AM вундӧгъяс оз вомӧнасьны OB веськыд визьыскӧд. Сідзкӧ, OB веськыд визь серти кӧ, N, C, A, М чутъяс куйлӧны ӧти тшӧтшкӧсджынйын. Артмис кыв вожалӧм.

Пельӧс градуса муртӧс

Урчитӧм. Пельӧслӧн доръясыс кӧ артмӧдӧны веськыд визь, сійӧ шусьӧ павтыртӧм пельӧсӧн.

Аксиомаяс. 
1. Быд пельӧс позьӧ муртавны плюса градусӧн. 
2. Визьньӧв кӧ мунӧ пельӧс доръяс костӧд, сэки тайӧ пельӧсас сымда жӧ градус, мыйта визьньӧвнас артмӧдӧм кыкнан пельӧсас ӧтув босьтӧмӧн.
Pel sum.jpg
3. Павтыртӧм пельӧсыс лоӧ 180° ыджда.
Pavt murt.jpg
4. Быд визьньӧвсянь позьӧ бӧрйӧм тшӧтшкӧсджынйӧ пуктыны сетӧм муртӧсӧн дзик ӧти пельӧс (медтыкӧ 180°-ысь ыджыдджык эз вӧв-а).

Орчча пельӧсъяс

Урчитӧм. Кык пельӧс шусьӧ орччаӧн, налӧн кӧ эм ӧтувъя дор, а мӧд доръяс кӧ артмӧдӧны веськыд визь.
Теорема. Ӧтувтам кӧ орчча пельӧсъяслысь ыджданысӧ, лоӧ 180°.
Эскӧдӧм. Орчча пельӧсъяс артмӧдӧны павтыртӧм пельӧссӧ, кодлӧн ыдждаыс 180°. Сідзкӧ, 2-ӧд аксиома серти, налӧн суммаыс лоас 180°.
Кывкӧртӧд.  Пельӧсыс кӧ 90° ыджда, сыкӧд орчча пельӧсыс сідзжӧ 90° ыджда.

Веськыд, ёсь да тшӧтшыд пельӧсъяс

Урчитӧм. Пельӧс шусьӧ ёсьӧн, сылӧн градуса муртӧсыс кӧ 90°-ысь этшаджык; веськыдӧн, сійӧ кӧ 90° ыджда; тшӧтшыдӧн, сійӧ кӧ 90°-ысь ыджыдджык.

Сувтса пельӧсъяс

Урчитӧм. Кык пельӧс шусьӧ сувтсаӧн, ӧтиыслӧн доръясыс кӧ лоӧны мӧд пельӧсса доръяслӧн нюжӧдӧмӧн.
Теорема. Сувтса пельӧсъяс ӧтыдждаӧсь.
Эскӧдӧм. Серпас серти, ∠AOB да ∠BOC орччаӧсь, ∠BOC да ∠COD орччаӧсь. Та вӧсна ∠AOB + ∠BOC = 180°, ∠BOC + ∠COD = 180°. Сідзкӧ, ∠AOB = 180° – ∠BOC = ∠COD.

Куимпельӧсаяс

куимпельӧса – треугольник
ӧткодь куимпельӧсаяс – равные треугольники

Урчитӧм. Куимпельӧсаӧн шусьӧ куим чутысь (кодъяс оз куйлыны ӧти веськыд визь вылын) да найӧс йитан вундӧгъясысь тэчӧм мыгӧр. Чутъясыс шусьӧны куимпельӧса йывъясӧн, вундӧгъясыс шусьӧны куимпельӧса доръясӧн.

A йывбердса пельӧсӧн ABC куимпельӧсаын шусьӧ AB да визьньӧвъясӧн артмӧм пельӧс.

Урчитӧм. ABC да A’B’C’ куимпельӧсаяс ӧткодьӧсь, налӧн кӧ ӧта-мӧдыслы лӧсялана пельӧсъяс ӧтыдждаӧсь да ӧта-мӧдыслы лӧсялана доръясыс ӧтыдждаӧсь: ∠A = ∠A’, ∠B = ∠B’, ∠C = ∠C’, AB = A’B’, AC = A’C’, BC = B’C’.

Сетӧма визьньӧв. Сылӧн нюжӧдӧмыс – веськыд визь; сійӧ юклӧ тшӧтшкӧссӧ кык тшӧтшкӧсджын вылӧ. Бӧръям на пиысь ӧтиӧс. Мед нӧшта сетӧма ABC куимпельӧса.

Аксиома. Индӧм тшӧтшкӧсджынйӧ позьӧ пуктыны ABC-кӧд ӧткодь A’B’C’ куимпельӧса сідзи, медым A’B’ вундӧг куйліс индӧм визьньӧвйын да A’ ӧтлаасис сылӧн воддза чуткӧд.

Куимпельӧсаяс ӧткодьлун йылысь медводдза тӧдмӧс

Теорема. Мед ABC да A’B’C’ – куимпельӧсаяс, AB = A’B’, AC = A’C’, ∠A = ∠A’. Сэки ∆ABC = ∆A’B’C’.

Эскӧдӧм. Аксиомаысь петӧ: эм сэтшӧм торъяланлуна AMK куимпельӧса: 1) ∆AMK = ∆A’B’C’, 2) AM куйлӧ AB визьньӧв пытшкын, 3) AMK да ABC куйлӧны ӧти тшӧтшкӧсджынйын AB веськыд визь серти. ∆AMK = ∆A’B’C’, та вӧсна AM = A’B’, AK = A’C’, ∠B’A’C’ = ∠MAK. Сідзкӧ: 1) AB = A’B’ = AM да, M = B; 2) ∠BAC = ∠B’A’C’ = ∠BAK, та вӧсна AK да AC визьньӧвъяс лӧсялӧны; 3) AC = A’C’ = AK да, K = C. Кык чут пыр мунӧ сӧмын ӧти веськыд визь. Сідзкӧ, AMK да ABC куимпельӧсаяс лӧсялӧны. Та вӧсна ∆ABC = ∆A’B’C’.

Ӧткодь берда да ӧткодь доръяса куимпельӧсаяс

ӧткодь берда куимпельӧса – равнобедренный треугольник
ӧткодь доръяса куимпельӧса – равносторонний треугольник
боквыв доръяс – боковые стороны
подув – основание

Урчитӧм. Куимпельӧса шусьӧ ӧткодь бердаӧн, сылӧн кӧ эм кык ӧтыджда дор. Куимпельӧса шусьӧ ӧткодь доръясаӧн, сылӧн кӧ куимнан дорыс ӧтыджда.

Ӧткодь берда куимпельӧсаын ӧткодь доръясыс шусьӧны боквыв доръясӧн, коймӧд дорыс шусьӧ подулӧн. Подувлы паныд куйлысь пельӧс шусьӧ йывса пельӧсӧн, боквыв дорлы паныд куйлысь пельӧс шусьӧ подув бердса пельӧсӧн.

Теорема. Ӧткодь берда куимпельӧсаын подув бердса пельӧсъяс ӧтыдждаӧсь.

Эскӧдӧм. Мед ABC – ӧткодь берда куимпельӧса, AB = BC. Лыддям куимпельӧсаыслысь йывъяссӧ торъя ногӧн: ABC да CBA. Артмӧдам кык торъя куимпельӧса. ∆ABC = ∆CBA медводдза тӧдмӧс серти: AB = BC, CB = BA, на костса B пельӧс ӧтувъя. Сідзкӧ, ∠BAC = ∠BCA.

Кывкӧртӧд. Ӧткодь доръяса куимпельӧсалӧн куимнан пельӧсыс ӧтыджда.

Куимпельӧсаяс ӧткодьлун йылысь мӧд тӧдмӧс

Теорема. Мед ABC да A’B’C’ – куимпельӧсаяс, AB = A’B’, ∠A = ∠A’, ∠B = ∠B’. Сэки ∆ABC = ∆A’B’C’. Эскӧдӧм. Аксиомаысь петӧ: эм сэтшӧм торъяланлуна AMK куимпельӧса: 1) ∆AMK = ∆A’B’C’, 2) AM куйлӧ AB визьньӧв пытшкын, 3) AMK да ABC куйлӧны ӧти тшӧтшкӧсджынйын AB веськыд визь серти. ∆AMK = ∆A’B’C’, та вӧсна AM = A’B’, ∠B’A’C’ = ∠MAK, ∠A’B’C’ = ∠AMK. Сідзкӧ: 1) AB = A’B’ = AM да, M = B; 2) ∠BAC = ∠B’A’C’ = ∠BAK, та вӧсна AK да AC визьньӧвъяс лӧсялӧны; 3) ∠ABC = ∠A’B’C’ = ∠ABK, та вӧсна BK да BC визьньӧвъяс лӧсялӧны. Кык торъялана веськыд визь вомӧнасьӧны сӧмын ӧти чутын. Сідзкӧ, K = C. Та вӧсна AMK да ABC куимпельӧсаяс лӧсялӧны да ∆ABC = ∆A’B’C’.

Теорема. Куимпельӧсаын кӧ эм кык ӧтыджда пельӧсыс, сійӧ ӧткодь берда.

Эскӧдӧм. Мед ABC – куимпельӧса, ∠A = ∠C. Лыддям куимпельӧсаыслысь йывъяссӧ торъя ногӧн: ABC да CBA. ∆ABC = ∆CBA мӧд тӧдмӧс серти: AB дорыс налӧн ӧтувъя, ∠A = ∠C, ∠C = ∠A. Сідзкӧ, AB = BC.

Кывкӧртӧд. Куимпельӧса ӧткодь берда сэк да сӧмын сэк, кор сылӧн эм кык ӧтыжда пельӧс.

Кывкӧртӧд. Куимпельӧса ӧткодь доръяса сэк да сӧмын сэк, кор сылӧн куимнан пельӧсыс ӧтыдждаӧсь.

Биссектриса, медиана да судта

Урчитӧм. Пельӧс биссектрисаӧн шусьӧ сылӧн йылысь петысь визьньӧв, коді юклӧ тайӧ пельӧссӧ шӧрипӧв.

Урчитӧм. Куимпельӧсаса индӧм йылысь гижтӧм биссектрисаӧн шусьӧ тайӧ йыла пельӧс биссектрисаса вундӧг, коді йитӧ йывсӧ да сылы паныда куйлысь дорвывса чутсӧ.

Урчитӧм. Куимпельӧсаса индӧм йылысь гижтӧм медианаӧн шусьӧ тайӧ йывсӧ паныда дорса шӧркӧд йитысь вундӧг.

Мед кык веськыд визь вомӧнасьӧны да ӧти артмӧм пельӧс веськыд. Сэки сыкӧд орчча пельӧсъясыс веськыдӧсь да сылы сувтса пельӧсыс веськыд.

Урчитӧм. Веськыд визь шусьӧ ӧшанвизьӧн мӧд веськыд визьлы, найӧ кӧ артмӧдӧны веськыд пельӧс.

Урчитӧм. Куимпельӧсаса индӧм йылысь петысь судтаӧн шусьӧ тайӧ йывсянь паныда дорсӧ кутысь веськыд визьӧ гижтӧм ӧшанвизь.

Теорема. Ӧткодь берда куимпельӧсаын йывса пельӧсыслӧн биссектриса лоӧ медианаӧн да судтаӧн.

Эскӧдӧм. Мед ABC – индӧм куимпельӧса, AB = BC, BD – биссектрисаыс. Сідзкӧ, ABD да CBD куимпельӧсаяс ӧткодьӧсь медводдза тӧдмӧс серти: AB = CB, ∠ABD = ∠CBD, BD – ӧтувъя дор. Та вӧсна AD = DC, ∠BDA = ∠BDC. Сіздкӧ, ∠BDA = ∠BDC = 90° кыдз орччаяс.

Куимпельӧсаяс ӧткодьлун йылысь коймӧд тӧдмӧс

Теорема. Мед ABC да A’B’C’ – куимпельӧсаяс, AB = A’B’, BC = B’C’, AC = A’C’. Сэки ∆ABC = ∆A’B’C’.

Эскӧдӧм. Аксиома серти, эм сэтшӧм торъяланлуна AMK куимпельӧса: 1) ∆AMK = ∆A’B’C’; 2) AM куйлӧ AB визьньӧв пытшкын; 3) K да C чутъяс куйлӧны торъя тшӧтшкӧсджынъясын AB веськыд визь серти. AB = A’B’ = AM, та вӧсна M = B. AC = A’C’ = AK; сідзкӧ, AC да AK – боквыв доръяс ӧткодь берда CAK куимпельӧсаын. Та вӧсна ∠AKC = ∠ACK. Сэтшӧм жӧ ногӧн артмӧдам: ∠BKC = ∠BCK. Сідзкӧ, ∠ACB = ∠ACK + ∠BCK = ∠AKC + ∠BKC = ∠AKB. Таысь кындзи, AC = AK, BC = BK. Сы вӧсна ABC да ABK куимпельӧсаяс ӧткодьӧсь медводдза тӧдмӧс серти да ∆A’B’C’ = ∆ABK = ∆ABC.

Содтӧд юӧр